Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 13(1): 251, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690874

ABSTRACT

INTRODUCTION: Endothelial cells (ECs) form the inner lining of all blood vessels of the body play important roles in vascular tone regulation, hormone secretion, anticoagulation, regulation of blood cell adhesion and immune cell extravasation. Limitless ECs sources are required to further in vitro investigations of ECs' physiology and pathophysiology as well as for tissue engineering approaches. Ideally, the differentiation protocol avoids animal-derived components such as fetal serum and yields ECs at efficiencies that make further sorting obsolete for most applications. METHOD: Human induced pluripotent stem cells (hiPSCs) are cultured under serum-free conditions and induced into mesodermal progenitor cells via stimulation of Wnt signaling for 24 h. Mesodermal progenitor cells are further differentiated into ECs by utilizing a combination of human vascular endothelial growth factor A165 (VEGF), basic fibroblast growth factor (bFGF), 8-Bromoadenosine 3',5'-cyclic monophosphate sodium salt monohydrate (8Bro) and melatonin (Mel) for 48 h. RESULT: This combination generates hiPSC derived ECs (hiPSC-ECs) at a fraction of 90.9 ± 1.5% and is easily transferable from the two-dimensional (2D) monolayer into three-dimensional (3D) scalable bioreactor suspension cultures. hiPSC-ECs are positive for CD31, VE-Cadherin, von Willebrand factor and CD34. Furthermore, the majority of hiPSC-ECs express the vascular endothelial marker CD184 (CXCR4). CONCLUSION: The differentiation method presented here generates hiPSC-ECs in only 6 days, without addition of animal sera and at high efficiency, hence providing a scalable source of hiPSC-ECs.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Differentiation/physiology , Endothelial Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mesoderm/metabolism , Vascular Endothelial Growth Factor A/metabolism
2.
Biofabrication ; 14(3)2022 06 10.
Article in English | MEDLINE | ID: mdl-35617928

ABSTRACT

Multicellular agglomerates in form of irregularly shaped or spherical clusters can recapitulate cell-cell interactions and are referred to as microtissues. Microtissues gain increasing attention in several fields including cardiovascular research. Cardiac microtissues are evolving as excellent model systems for drug testingin vitro(organ-on-a-chip), are used as tissue bricks in 3D printing processes and pave the way for improved cell replacement therapiesin vivo. Microtissues are formed for example in hanging drop culture or specialized microwell plates; truly scalable methods are not yet available. In this study, a novel method of encapsulation of cells inpoly-N-isopropylacrylamid(PNIPAAm) spheres is introduced. Murine induced pluripotent stem cell-derived cardiomyocytes and bone marrow-derived mesenchymal stem cells were encapsulated in PNIPAAm by raising the temperature of droplets formed in a microfluidics setup above the lower critical solute temperature (LCST) of 32 °C. PNIPAAM precipitates to a water-insoluble physically linked gel above the LCST and shrinks by the expulsion of water, thereby trapping the cells in a collapsing polymer network and increasing the cell density by one order of magnitude. Within 24 h, stable cardiac microtissues were first formed and later released from their polymer shell by washout of PNIPAAm at temperatures below the LCST. Rhythmically contracting microtissues showed homogenous cell distribution, age-dependent sarcomere organizations and action potential generation. The novel approach is applicable for microtissue formation from various cell types and can be implemented into scalable workflows.


Subject(s)
Cell Encapsulation , Microfluidics , Acrylic Resins , Animals , Gels , Mice , Tissue Engineering , Water
3.
Methods Mol Biol ; 2454: 145-161, 2022.
Article in English | MEDLINE | ID: mdl-34664217

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) can be expanded at limitless scale in vitro and give rise to various organotypic cells, cardiomyocytes (CMs) among them. Advanced protocols shape the differentiation process of pluripotent stem cells by controlled growth factor application. Modulating the Wnt signaling pathway is effective to direct hiPSCs to CMs (hiPSC-CMs) and native growth factors were replaced by small chemical compounds. Here, we describe a refined protocol for scalable generation of hiPSC-CMs that manipulates porcupine and tankyrase sub-pathways of Wnt signaling for tight inhibition of non-canonical Wnt signaling. The approach results in a differentiation efficiency toward hiPSC-CMs of 87 ± 0.9% in stirred bioreactor cultures and yields about 70 million hiPSC-CMs per 100 mL serum free cardiac differentiation medium. The differentiation protocol is easily adapted from 3D to 2D culture and vice versa and has been demonstrated to work with different hiPSC lines.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Cells, Cultured , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Myocytes, Cardiac , Organogenesis , Wnt Signaling Pathway
4.
Arch Toxicol ; 94(9): 3265-3280, 2020 09.
Article in English | MEDLINE | ID: mdl-32700163

ABSTRACT

In vitro assessment of genotoxicity as an early warning tool for carcinogenicity mainly relies on recording cytogenetic damages (micronuclei, nucleoplasmic bridges) in tumour-derived mammalian cell lines like V79 or CHO. The forecasting power of the corresponding standardised test is based on epidemiological evidence between micronuclei frequencies and cancer incidence. As an alternative to destructive staining of nuclear structures a fish stem cell line transgenic for a fusion protein of histone 2B (H2B) and enhanced green fluorescent protein (eGFP) was established. The cells are derived from koi carp brain (KCB) and distinguish from mammalian culturable cells by non-tumour-driven self-renewal. This technology enables the analysis of genotoxic- and malign downstream effects in situ in a combined approach. In proof-of concept-experiments, we used known carcinogens (4-Nitroquinoline 1-oxide, colchicine, diethylstilbestrol, ethyl methanesulfonate) and observed a significant increase in micronuclei (MNi) frequencies in a dose-dependent manner. The concentration ranges for MNi induction were comparable to human/mammalian cells (i.e. VH-16, CHL and HepG2). Cannabidiol caused the same specific cytogenetic damage pattern as observed in human cells, in particular nucleoplasmic bridges. Metabolic activation of aflatoxin B1 and cyclophosphamide could be demonstrated by pre-incubation of the test compounds using either conventional rat derived S9 mix as well as an in vitro generated biotechnological alternative product ewoS9R. The presented high throughput live H2B-eGFP imaging technology using non-transformed stem cells opens new perspectives in the field of in vitro toxicology. The technology offers experimental access to investigate the effects of carcinogens on cell cycle control, gene expression pattern and motility in the course of malign transformation. The new technology enables the definition of Adverse Outcome Pathways leading to malign cell transformation and contributes to the replacement of animal testing. Summary: Complementation of genotoxicity testing by addressing initiating events leading to malign transformation is suggested. A vertebrate cell model showing "healthy" stemness is recommended, in contrast to malign transformed cells used in toxicology/oncocology.


Subject(s)
Adverse Outcome Pathways , Mutagenicity Tests , Animals , Animals, Genetically Modified , Carcinogens/toxicity , Cell Line , Cell Nucleus , Cell Transformation, Neoplastic , Cells, Cultured , Cyclophosphamide , DNA Damage , Ethyl Methanesulfonate , Green Fluorescent Proteins , Histones , Humans , Mutagens/toxicity , Neoplasms , Rats , Stem Cells
5.
Theranostics ; 9(24): 7222-7238, 2019.
Article in English | MEDLINE | ID: mdl-31695764

ABSTRACT

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are promising candidates to treat myocardial infarction and other cardiac diseases. Such treatments require pure cardiomyocytes (CMs) in large quantities. Methods: In the present study we describe an improved protocol for production of hiPSC-CMs in which hiPSCs are first converted into mesodermal cells by stimulation of wingless (Wnt) signaling using CHIR99021, which are then further differentiated into CM progenitors by simultaneous inhibition of porcupine and tankyrase pathways using IWP2 and XAV939 under continuous supplementation of ascorbate during the entire differentiation procedure. Results: The protocol resulted in reproducible generation of >90% cardiac troponin T (TNNT2)-positive cells containing highly organized sarcomeres. In 2D monolayer cultures CM yields amounted to 0.5 million cells per cm2 growth area, and on average 72 million cells per 100 mL bioreactor suspension culture without continuous perfusion. The differentiation efficiency was hardly affected by the initial seeding density of undifferentiated hiPSCs. Furthermore, batch-to-batch variations were reduced by combinatorial use of ascorbate, IWP2, and XAV939. Conclusion: Combined inhibition of porcupine and tankyrase sub-pathways of Wnt signaling and continuous ascorbate supplementation, enable robust and efficient production of hiPSC-CMs.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Bioreactors , Cell Culture Techniques/instrumentation , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Culture Media/chemistry , Culture Media/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Troponin T/genetics , Troponin T/metabolism
6.
Cell Physiol Biochem ; 52(6): 1309-1324, 2019.
Article in English | MEDLINE | ID: mdl-31050280

ABSTRACT

BACKGROUND/AIMS: Different approaches have been considered to improve heart reconstructive medicine and direct delivery of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) appears to be highly promising in this context. However, low cell persistence post-transplantation remains a bottleneck hindering the approach. Here, we present a novel strategy to overcome the low engraftment of PSC-CMs during the early post-transplantation phase into the myocardium of both healthy and cryoinjured syngeneic mice. METHODS: Adult murine bone marrow mesenchymal stem cells (MSCs) and PSC-CMs were co-cultured on thermo-responsive polymers and later detached through temperature reduction, resulting in the protease-free generation of cell clusters (micro-tissues) composed of both cells types. Micro-tissues were transplanted into healthy and cryo-injured murine hearts. Short term cell retention was quantified by real-time-PCR. Longitudinal cell tracking was performed by bioluminescence imaging for four weeks. Transplanted cells were further detected by immunofluorescence staining of tissue sections. RESULTS: We demonstrated that in vitro grown micro-tissues consisting of PSC-CMs and MSCs can increase cardiomyocyte retention by >10fold one day post-transplantation, but could not fully rescue a further cell loss between day 1 and day 2. Neutrophil infiltration into the transplanted area was detected in healthy hearts and could be attributed to the cellular implantation rather than tissue damage exerted by the transplantation cannula. Injected PSC-CMs were tracked and successfully detected for up to four weeks by bioluminescence imaging. CONCLUSION: This approach demonstrated that in vitro grown micro-tissues might contribute to the development of cardiac cell replacement therapies.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Myocardium/pathology , Myocytes, Cardiac/transplantation , Animals , Bone Marrow Cells/cytology , Cell Line , Cell Tracking , Coculture Techniques , Immunity, Innate , Male , Mesenchymal Stem Cells/metabolism , Mice , Microscopy, Fluorescence , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Myocardium/immunology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neutrophil Infiltration , Optical Imaging , Pluripotent Stem Cells/cytology , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...