Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1217103, 2023.
Article in English | MEDLINE | ID: mdl-37868353

ABSTRACT

The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Peritonitis , Animals , Mice , Anti-Bacterial Agents/pharmacology , Platelet Factor 4/chemistry , Platelet Factor 4/metabolism , Staphylococcus aureus/metabolism , Disease Models, Animal , Phagocytosis , Macrophage-1 Antigen/metabolism , Immunologic Factors , Peritonitis/drug therapy
2.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662328

ABSTRACT

The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.

3.
Mol Oncol ; 17(10): 1953-1961, 2023 10.
Article in English | MEDLINE | ID: mdl-37666492

ABSTRACT

The role of the tumor microenvironment (TME) in immuno-oncology has driven demand for technologies that deliver in situ, or spatial, molecular information. Compartmentalized heterogeneity that traditional methods miss is becoming key to predicting both acquired drug resistance to targeted therapies and patient response to immunotherapy. Here, we describe a novel method for assay-agnostic spatial profiling and demonstrate its ability to detect immune microenvironment signatures in breast cancer patients that are unresolved by the immunohistochemical (IHC) assessment of programmed cell death ligand-1 (PD-L1) on immune cells, which represents the only FDA microenvironment-based companion diagnostic test that has been approved for triple-negative breast cancer (TNBC). Two distinct physiological states were found that are uncorrelated to tumor mutational burden (TMB), microsatellite instability (MSI), PD-L1 expression, and intrinsic cancer subtypes.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment/genetics , B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , Medical Oncology
4.
Sci Rep ; 6: 35227, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27731371

ABSTRACT

In carcinogenesis, intercellular interactions within and between cell types are critical but remain poorly understood. We present a study on intercellular interactions between normal and premalignant epithelial cells and their functional relevance in the context of premalignant to malignant progression in Barrett's esophagus. Using whole transcriptome profiling we found that in the presence of normal epithelial cells, dysplastic cells but not normal cells, exhibit marked down-regulation of a number of key signaling pathways, including the transforming growth factor beta (TGFß) and epithelial growth factor (EGF). Functional assays revealed both cell types showed repressed proliferation and significant changes in motility (speed, displacement and directionality) as a result of interactions between the two cell types. Cellular interactions appear to be mediated through both direct cell-cell contact and secreted ligands. The findings of this study are important in that they reveal, for the first time, the effects of cellular communication on gene expression and cellular function between premalignant (dysplastic) epithelial cells and their normal counterparts.


Subject(s)
Barrett Esophagus/pathology , Gene Expression Regulation , Transcription, Genetic , Cell Communication , Cell Line , Cell Line, Tumor , Coculture Techniques , Culture Media, Conditioned , Disease Progression , Epidermal Growth Factor/metabolism , Epithelium/pathology , Humans , Sequence Analysis, RNA , Transcriptome , Transforming Growth Factor beta/metabolism
5.
Thromb Haemost ; 104(1): 172-82, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20508901

ABSTRACT

TP508, a 23-amino acid RGD-containing synthetic peptide representing residues 508 to 530 of human prothrombin, mitigates the effects of endothelial dysfunction in ischaemic reperfusion injury. The objective of this study was to investigate whether TP508 binds to members of the integrin family of transmembrane receptors leading to nitric oxide synthesis. Immobilised TP508 supported adhesion of endothelial cells and alphavbeta3-expressing human embryonic kidney cells in a dose- and RGD-dependent manner. Soluble TP508 also inhibited cell adhesion to immobilised fibrinogen. The involvement of alphavbeta3 was verified with function-blocking antibodies and surface plasmon resonance studies. Adhesion of the cells to immobilised TP508 resulted in an induction of phosphorylated FAK and ERK1/2. In endothelial cells, TP508 treatment resulted in an induction of nitric oxide that could be inhibited by LM609, an alphavbeta3-specific, function-blocking monoclonal antibody. Finally, TP508 treatment of isolated rat aorta segments enhanced carbachol-induced vasorelaxation. These results suggest that TP508 elicits a potentially therapeutic effect through an RGD-dependent interaction with integrin alphavbeta3.


Subject(s)
Aorta/metabolism , Endothelial Cells/metabolism , Integrin alphaVbeta3/metabolism , Nitric Oxide/biosynthesis , Peptide Fragments/pharmacology , Thrombin/pharmacology , Animals , Antibodies, Blocking/pharmacology , Aorta/drug effects , Aorta/pathology , Carbachol/metabolism , Cell Adhesion/drug effects , Cell Line , Endothelial Cells/drug effects , Endothelial Cells/pathology , Focal Adhesion Kinase 2/genetics , Focal Adhesion Kinase 2/metabolism , Humans , Integrin alphaVbeta3/immunology , Male , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Nitric Oxide/genetics , Oligopeptides/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Vasodilation/drug effects
6.
FEBS Lett ; 579(29): 6611-5, 2005 Dec 05.
Article in English | MEDLINE | ID: mdl-16297917

ABSTRACT

Major sites for Rho-kinase on the myosin phosphatase target subunit (MYPT1) are Thr695 and Thr850. Phosphorylation of Thr695 inhibits phosphatase activity but the role of phosphorylation at Thr850 is not clear and is evaluated here. Phosphorylation of both Thr695 and Thr850 by Rho-kinase inhibited activity of the type 1 phosphatase catalytic subunit. Rates of phosphorylation of the two sites were similar and efficacy of inhibition following phosphorylation was equivalent for each site. Phosphorylation of each site on MYPT1 was detected in A7r5 cells, but Thr850 was preferred by Rho-kinase and Thr695 was phosphorylated by an unidentified kinase(s).


Subject(s)
Myosin-Light-Chain Phosphatase/metabolism , Threonine/metabolism , Animals , Binding Sites , Cell Line , Chickens , Kinetics , Mutation , Myocytes, Smooth Muscle , Myosin-Light-Chain Phosphatase/antagonists & inhibitors , Myosin-Light-Chain Phosphatase/genetics , Phosphorylation , Protein Subunits/metabolism , Rats , Substrate Specificity , rho GTP-Binding Proteins/metabolism
7.
Arterioscler Thromb Vasc Biol ; 24(3): 464-9, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14707041

ABSTRACT

OBJECTIVE: The region of the 110 kDa regulatory subunit (MYPT1) of smooth muscle myosin phosphatase involved in the regulation of contraction was determined under physiological conditions. METHODS AND RESULTS: Using HIV Tat protein-mediated protein transduction, the N-terminal fragments of MYPT1 were introduced to the intact porcine coronary arterial strips. Pre-incubation with 3 micromol/L TAT-MYPT1(1-374), a construct containing the Tat peptide and the residues 1 to 374 of MYPT1, for 15 minutes augmented (2.4-fold) the subsequent contraction induced by adding 1.25 mmol/L of extracellular Ca2+ under 118 mmol/L K+ depolarization, with no augmentation of the [Ca2+]i elevation. The deletion of the Tat peptide, MYPT1(1-374), abolished the augmenting effect. TAT-MYPT1(1-296) demonstrated a weaker but significant augmentation (1.7-fold). However, TAT-MYPT1(1-171), TAT-MYPT1(39-374), TAT-MYPT1(39-296), and TAT-MYPT1(297-374) had no augmenting activity. The myosin light chain phosphorylation level as a function of extracellular Ca2+ concentrations was shifted to the left in the strips pretreated with TAT-MYPT1(1-374) compared with the control. CONCLUSIONS: Region 1 to 296 was the minimal region involved in the enhancement of contraction, and region 297 to 374 played a supplemental role. These results suggested that the interaction mainly between catalytic subunit and MYPT1 play a critical role in the regulation of the endogenous myosin phosphatase in intact smooth muscle.


Subject(s)
Actin Cytoskeleton/drug effects , Calcium/pharmacology , Coronary Vessels/drug effects , Myosin-Light-Chain Phosphatase/physiology , Animals , Catalytic Domain , Chickens , Coronary Vessels/enzymology , Gene Products, tat/physiology , In Vitro Techniques , Muscle, Smooth, Vascular/enzymology , Myocardial Contraction , Myosin-Light-Chain Phosphatase/chemistry , Myosin-Light-Chain Phosphatase/genetics , Peptide Fragments/pharmacology , Phosphorylation , Protein Interaction Mapping , Protein Processing, Post-Translational , Protein Structure, Tertiary , Recombinant Fusion Proteins/physiology , Sus scrofa , Transduction, Genetic , Vasoconstriction/physiology
8.
Mol Cell Biochem ; 248(1-2): 105-14, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12870661

ABSTRACT

The contraction of smooth muscle is regulated primarily by intracellular Ca2+ signal. It is well established that the elevation of the cytosolic Ca2+ level activates myosin light chain kinase, which phosphorylates 20 kDa regulatory myosin light chain and activates myosin ATPase. The simultaneous measurement of cytosolic Ca2+ concentration and force development revealed that the alteration of the Ca2+-sensitivity of the contractile apparatus as well as the Ca2+ signal plays a critical role in the regulation of smooth muscle contraction. The fluctuation of an extent of myosin phosphorylation for a given change in Ca2+ concentration is considered to contribute to the major mechanisms regulating the Ca2+-sensitivity. The level of myosin phosphorylation is determined by the balance between phosphorylation and dephosphorylation. The phosphorylation level for a given Ca2+ elevation is increased either by Ca2+-independent activation of phosphorylation process or inhibition of dephosphorylation. In the last decade, the isolation and cloning of myosin phosphatase facilitated the understanding of regulatory mechanism of dephosphorylation process at the molecular level. The inhibition of myosin phosphatase can be achieved by (1) alteration of hetrotrimeric structure, (2) phosphorylation of 110 kDa regulatory subunit MYPT1 at the specific site and (3) inhibitory protein CPI-17 upon its phosphorylation. Rho-kinase was first identified to phosphorylate MYPT1, and later many kinases were found to phosphorylate MYPT1 and inhibit dephosphorylation of myosin. Similarly, the phosphorylation of CPI-17 can be catalysed by multiple kinases. Moreover, the myosin light chain can be phosphorylated by not only authentic myosin light chain kinase in a Ca2+-dependent manner but also by multiple kinases in a Ca2+-independent manner, thus adding a novel mechanism to the regulation of the Ca2+-sensitivity by regulating the phosphorylation process. It is now clarified that the protein kinase network is involved in the regulation of myosin phosphorylation and dephosphorylation. However, the physiological role of each component remains to be determined. One approach to accomplish this purpose is to investigate the effects of the dominant negative mutants of the signalling molecule on the smooth muscle contraction. In this regards, a protein transduction technique utilizing the cell-penetrating peptides would provide a useful tool. In the preliminary study, we succeeded in introducing a fragment of MYPT1 into the arterial strips, and found enhancement of contraction.


Subject(s)
Muscle, Smooth/metabolism , Myosin Light Chains/metabolism , Protein Kinases/physiology , Adenosine Triphosphatases/metabolism , Animals , Calcium/metabolism , Cytosol/metabolism , Dimerization , Genes, Dominant , Humans , Intracellular Signaling Peptides and Proteins , Models, Biological , Muscle Contraction , Muscle Proteins/biosynthesis , Mutation , Phosphoprotein Phosphatases , Phosphoproteins/biosynthesis , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphorylation , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL