Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 347: 122617, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38608835

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE: This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS: It was performed a search of topical articles using PubMed databases. FINDINGS: Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION: Platelets play an important role in the regulation of cardiac tolerance to I/R.


Subject(s)
Blood Platelets , Myocardial Reperfusion Injury , Platelet Activating Factor , Platelet-Derived Growth Factor , Vascular Endothelial Growth Factor A , Humans , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Blood Platelets/metabolism , Platelet Activating Factor/metabolism , Platelet-Derived Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/prevention & control , Myocardial Infarction/pathology
2.
Article in English | MEDLINE | ID: mdl-38423796

ABSTRACT

BACKGROUND: Catecholamines and ß-adrenergic receptors (ß-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of ß-AR ligands. METHODS: We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of ß-AR agonists and antagonists. RESULTS: The infarct-reducing effect of ß-AR antagonists did not depend on a decrease in the heart rate. The target for ß-blockers is not only cardiomyocytes but also neutrophils. ß1-blockers (metoprolol, propranolol, timolol) and the selective ß2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of ß1- and ß2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All ß-AR ligands that reduced infarct size are the selective or nonselective ß1-blockers. It was hypothesized that ß1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of ß1-AR, ß2-AR, and ß3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of ß-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS: It is unclear why ß-blockers with the similar receptor selectivity have the infarct-sparing effect while other ß-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of ß-blockers in reperfusion? Why did in early studies ß-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies ß-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective ß-AR ligands depends on the answers to these questions.

3.
Fundam Clin Pharmacol ; 38(3): 489-501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38311344

ABSTRACT

BACKGROUND: The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE: The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS: Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION: The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.


Subject(s)
Angiotensin I , Myocardial Reperfusion Injury , Peptide Fragments , Signal Transduction , Angiotensin I/pharmacology , Peptide Fragments/pharmacology , Humans , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/physiopathology , Animals , Signal Transduction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Ventricular Remodeling/drug effects , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Apoptosis/drug effects
4.
J Biomed Res ; 37(4): 281-302, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37503711

ABSTRACT

The analysis of experimental data demonstrates that platelets and neutrophils are involved in the no-reflow phenomenon, also known as microvascular obstruction (MVO). However, studies performed in the isolated perfused hearts subjected to ischemia/reperfusion (I/R) do not suggest the involvement of microembolization and microthrombi in this phenomenon. The intracoronary administration of alteplase has been found to have no effect on the occurrence of MVO in patients with acute myocardial infarction. Consequently, the major events preceding the appearance of MVO in coronary arteries are independent of microthrombi, platelets, and neutrophils. Endothelial cells appear to be the target where ischemia can disrupt the endothelium-dependent vasodilation of coronary arteries. However, reperfusion triggers more pronounced damage, possibly mediated by pyroptosis. MVO and intra-myocardial hemorrhage contribute to the adverse post-infarction myocardial remodeling. Therefore, pharmacological agents used to treat MVO should prevent endothelial injury and induce relaxation of smooth muscles. Ischemic conditioning protocols have been shown to prevent MVO, with L-type Ca 2+ channel blockers appearing the most effective in treating MVO.

5.
Fundam Clin Pharmacol ; 37(6): 1020-1049, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37218378

ABSTRACT

BACKGROUND: The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS: KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION: The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.


Subject(s)
Myocardial Reperfusion Injury , No-Reflow Phenomenon , Percutaneous Coronary Intervention , Humans , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Apoptosis , Reperfusion , Adenosine Triphosphate , KATP Channels
6.
Apoptosis ; 28(1-2): 55-80, 2023 02.
Article in English | MEDLINE | ID: mdl-36369366

ABSTRACT

Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3ß, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.


Subject(s)
Myocardial Reperfusion Injury , Signal Transduction , Humans , AMP-Activated Protein Kinases/metabolism , Glycogen Synthase Kinase 3 beta , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Myocytes, Cardiac/metabolism , Ischemia , Reperfusion , Autophagy , Phosphatidylinositol 3-Kinases
7.
Korean Circ J ; 52(10): 737-754, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36217596

ABSTRACT

Ischemic and reperfusion injuries of the heart underlie the pathogenesis of acute myocardial infarction (AMI) and sudden cardiac death. The mortality rate is still high and is 5-7% in patients with ST-segment elevation myocardial infarction. The review is devoted to pharmacological approaches to limitation of ischemic and reperfusion injuries of the heart. The article analyzes experimental evidence and the clinical data on the effects of P2Y12 receptor antagonists on the heart's tolerance to ischemia/reperfusion in animals with coronary artery occlusion and reperfusion and also in patients with AMI. Chronic administration of ticagrelor prevented adverse remodeling of the heart. There is evidence that sphingosine-1-phosphate is the molecule that mediates the infarct-reducing effect of P2Y12 receptor antagonists. It was discussed a role of adenosine in the cardioprotective effect of ticagrelor.

8.
Apoptosis ; 27(9-10): 697-719, 2022 10.
Article in English | MEDLINE | ID: mdl-35986803

ABSTRACT

In the last 10 years, mortality from acute myocardial infarction (AMI) has not significantly decreased. This situation is associated with the absence in clinical practice of highly effective drugs capable of preventing the occurrence of reperfusion injury of the heart. Necroptosis inhibitors may become prototypes for the creation of highly effective drugs that increase cardiac tolerance to ischemic/reperfusion (I/R) and reduce the mortality rate in patients with AMI. Necroptosis is involved in I/R cardiac injury and inhibition of RIPK1 or RIPK3 contributes to an increase in cardiac tolerance to I/R. Necroptosis could also be involved in the development of adverse remodeling of the heart. It is unclear whether pre- and postconditioning could inhibit necroptosis of cardiomyocytes and endothelial cells. The role of necroptosis in coronary microvascular obstruction and the no-reflow phenomenon also needs to be studied. MicroRNAs and LncRNAs can regulate necroptotic cell death. Ca2+ overload and reactive oxygen species could be the triggers of necroptosis. Activation of kinases (p38, JNK1, Akt, and mTOR) could promote necroptotic cell death. The interaction of necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis is discussed. The water-soluble necroptosis inhibitors may be highly effective drugs for treatment of AMI or stroke. It is possible that microRNAs may become the basis for creating drugs for treatment of diseases triggered by I/R of organs.


Subject(s)
MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Apoptosis , Endothelial Cells/metabolism , Humans , MicroRNAs/pharmacology , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Necroptosis , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Reperfusion , TOR Serine-Threonine Kinases/metabolism , Water/metabolism
9.
J Biomed Res ; 37(4): 230-254, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-37183617

ABSTRACT

The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...