Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Genes Chromosomes Cancer ; 63(5): e23238, 2024 May.
Article in English | MEDLINE | ID: mdl-38722224

ABSTRACT

Pleomorphic rhabdomyosarcoma (PRMS) is a rare and highly aggressive sarcoma, occurring mostly in the deep soft tissues of middle-aged adults and showing a variable degree of skeletal muscle differentiation. The diagnosis is challenging as pathologic features overlap with embryonal rhabdomyosarcoma (ERMS), malignant Triton tumor, and other pleomorphic sarcomas. As recurrent genetic alterations underlying PRMS have not been described to date, ancillary molecular diagnostic testing is not useful in subclassification. Herein, we perform genomic profiling of a well-characterized cohort of 14 PRMS, compared to a control group of 23 ERMS and other pleomorphic sarcomas (undifferentiated pleomorphic sarcoma and pleomorphic liposarcoma) using clinically validated DNA-targeted Next generation sequencing (NGS) panels (MSK-IMPACT). The PRMS cohort included eight males and six females, with a median age of 53 years (range 31-76 years). Despite similar tumor mutation burdens, the genomic landscape of PRMS, with a high frequency of TP53 (79%) and RB1 (43%) alterations, stood in stark contrast to ERMS, with 4% and 0%, respectively. CDKN2A deletions were more common in PRMS (43%), compared to ERMS (13%). In contrast, ERMS harbored somatic driver mutations in the RAS pathway and loss of function mutations in BCOR, which were absent in PRMS. Copy number variations in PRMS showed multiple chromosomal arm-level changes, most commonly gains of chr17p and chr22q and loss of chr6q. Notably, gain of chr8, commonly seen in ERMS (61%) was conspicuously absent in PRMS. The genomic profiles of other pleomorphic sarcomas were overall analogous to PRMS, showing shared alterations in TP53, RB1, and CDKN2A. Overall survival and progression-free survival of PRMS were significantly worse (p < 0.0005) than that of ERMS. Our findings revealed that the molecular landscape of PRMS aligns with other adult pleomorphic sarcomas and is distinct from that of ERMS. Thus, NGS assays may be applied in select challenging cases toward a refined classification. Finally, our data corroborate the inclusion of PRMS in the therapeutic bracket of pleomorphic sarcomas, given that their clinical outcomes are comparable.


Subject(s)
Rhabdomyosarcoma, Embryonal , Humans , Male , Female , Adult , Middle Aged , Aged , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/pathology , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/classification , Mutation , High-Throughput Nucleotide Sequencing/methods , Genomics/methods , Biomarkers, Tumor/genetics , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases
2.
Genes Chromosomes Cancer ; 63(5): e23240, 2024 May.
Article in English | MEDLINE | ID: mdl-38722225

ABSTRACT

Both primary and secondary breast angiosarcoma (AS) are characterized by multifocal presentation and aggressive behavior. Despite multimodality therapy, local and distant relapse rates remain high. Therefore, neoadjuvant chemotherapy (NACT) is employed to improve the R0 resection rates and survival, but its benefits remain controversial. Herein, we investigate pathologic and molecular correlates to NACT-induced histologic response in a group of 29 breast AS, 4 primary and 25 radiation-associated (RA). The two NACT regimens applied were anthracycline- and non-anthracycline-based. The pathologic response grade was defined as: I: ≤ 50%, II: 51%-90%, III: 91%-99%, and IV: 100%. An additional 45 primary AS and 102 RA-AS treated by surgery alone were included for survival comparison. The genomic landscape was analyzed in a subset of cases and compared to a cohort of AS without NACT on a paired tumor-normal targeted DNA NGS platform. All patients were females, with a median age of 31 years in primary AS and 68 years in RA-AS. All surgical margins were negative in NACT group. The NACT response was evenly divided between poor (Grades I-II; n = 15) and good responders (Grades III-IV; n = 14). Mitotic count >10/mm2 was the only factor inversely associated with pathologic response. By targeted NGS, all 10 post-NACT RA-AS demonstrated MYC amplification, while both primary AS harbored KDR mutations. TMB or other genomic alterations did not correlate with pathologic response. All four patients with Grade IV response remained free of disease. The good responders had a significantly better disease-specific survival (p = 0.04). There was no survival difference with NACT status or the NACT regimens applied. However, NACT patients with MYC-amplified tumors showed better disease-free survival (p = 0.04) compared to MYC-amplified patients without NACT. The overall survival of NACT group correlated with size >10 cm (p = 0.02), pathologic response (p = 0.04), and multifocality (p = 0.01) by univariate, while only size >10 cm (p = 0.03) remained significant by multivariate analysis.


Subject(s)
Breast Neoplasms , Hemangiosarcoma , Neoadjuvant Therapy , Humans , Hemangiosarcoma/genetics , Hemangiosarcoma/pathology , Hemangiosarcoma/drug therapy , Female , Neoadjuvant Therapy/methods , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Aged , Adult , Middle Aged , Aged, 80 and over , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Anthracyclines/therapeutic use
3.
Genes Chromosomes Cancer ; 63(4): e23232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607246

ABSTRACT

The wide application of RNA sequencing in clinical practice has allowed the discovery of novel fusion genes, which have contributed to a refined molecular classification of rhabdomyosarcoma (RMS). Most fusions in RMS result in aberrant transcription factors, such as PAX3/7::FOXO1 in alveolar RMS (ARMS) and fusions involving VGLL2 or NCOA2 in infantile spindle cell RMS. However, recurrent fusions driving oncogenic kinase activation have not been reported in RMS. Triggered by an index case of an unclassified RMS (overlapping features between ARMS and sclerosing RMS) with a novel FGFR1::ANK1 fusion, we reviewed our molecular files for cases harboring FGFR1-related fusions. One additional case with an FGFR1::TACC1 fusion was identified in a tumor resembling embryonal RMS (ERMS) with anaplasia, but with no pathogenic variants in TP53 or DICER1 on germline testing. Both cases occurred in males, aged 7 and 24, and in the pelvis. The 2nd case also harbored additional alterations, including somatic TP53 and TET2 mutations. Two additional RMS cases (one unclassified, one ERMS) with FGFR1 overexpression but lacking FGFR1 fusions were identified by RNA sequencing. These two cases and the FGFR1::TACC1-positive case clustered together with the ERMS group by RNAseq. This is the first report of RMS harboring recurrent FGFR1 fusions. However, it remains unclear if FGFR1 fusions define a novel subset of RMS or alternatively, whether this alteration can sporadically drive the pathogenesis of known RMS subtypes, such as ERMS. Additional larger series with integrated genomic and epigenetic datasets are needed for better subclassification, as the resulting oncogenic kinase activation underscores the potential for targeted therapy.


Subject(s)
Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Male , Humans , Adult , Child , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma, Embryonal/genetics , Epigenomics , Genomics , Ribonuclease III , DEAD-box RNA Helicases , Receptor, Fibroblast Growth Factor, Type 1/genetics
4.
JCO Precis Oncol ; 8: e2300597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603649

ABSTRACT

PURPOSE: Alterations of the NF1 tumor suppressor gene is the second most frequent genetic event in embryonal rhabdomyosarcoma (ERMS), but its associations with clinicopathologic features, outcome, or coexisting molecular events are not well defined. Additionally, NF1 alterations, mostly in the setting of neurofibromatosis type I (NF1), drive the pathogenesis of most malignant peripheral nerve sheath tumor with divergent RMS differentiation (also known as malignant triton tumor [MTT]). Distinguishing between these entities can be challenging because of their pathologic overlap. This study aims to comprehensively analyze the clinicopathologic and molecular spectrum of NF1-mutant RMS compared with NF1-associated MTT for a better understanding of their pathogenesis. METHODS: We investigated the clinicopathologic and molecular landscape of a cohort of 22 NF1-mutant RMS and a control group of 13 NF1-associated MTT. Cases were tested on a matched tumor-normal hybridization capture-based targeted DNA next-generation sequencing. RESULTS: Among the RMS group, all except one were ERMS, with a median age of 17 years while for MTT the mean age was 39 years. Three MTTs were misdiagnosed as ERMS, having clinical impact in one. The most frequent coexisting alteration in ERMS was TP53 abnormality (36%), being mutually exclusive from NRAS mutations (14%). MTT showed coexisting CDKN2A/B and PRC2 complex alterations in 38% cases and loss of H3K27me3 expression. Patients with NF1-mutant RMS exhibited a 70% 5-year survival rate, in contrast to MTT with a 33% 5-year survival. All metastatic NF1-mutant ERMS were associated with TP53 alterations. CONCLUSION: Patients with NF1-mutant ERMS lacking TP53 alterations may benefit from dose-reduction chemotherapy. On the basis of the diagnostic challenges and significant treatment and prognostic differences, molecular profiling of challenging tumors with rhabdomyoblastic differentiation is recommended.


Subject(s)
Neurofibromatosis 1 , Rhabdomyosarcoma , Adolescent , Adult , Humans , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics , Neurofibromatosis 1/complications , Neurofibrosarcoma/diagnosis , Neurofibrosarcoma/genetics , Neurofibrosarcoma/complications , Phenotype , Rhabdomyosarcoma/diagnosis , Rhabdomyosarcoma/genetics
5.
Clin Cancer Res ; 30(10): 2260-2271, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38488807

ABSTRACT

PURPOSE: Leiomyosarcomas (LMS) are clinically and molecularly heterogeneous tumors. Despite recent large-scale genomic studies, current LMS risk stratification is not informed by molecular alterations. We propose a clinically applicable genomic risk stratification model. EXPERIMENTAL DESIGN: We performed comprehensive genomic profiling in a cohort of 195 soft tissue LMS (STLMS), 151 primary at presentation, and a control group of 238 uterine LMS (ULMS), 177 primary at presentation, with at least 1-year follow-up. RESULTS: In STLMS, French Federation of Cancer Centers (FNCLCC) grade but not tumor size predicted progression-free survival (PFS) or disease-specific survival (DSS). In contrast, in ULMS, tumor size, mitotic rate, and necrosis were associated with inferior PFS and DSS. In STLMS, a 3-tier genomic risk stratification performed well for DSS: high risk: co-occurrence of RB1 mutation and chr12q deletion (del12q)/ATRX mutation; intermediate risk: presence of RB1 mutation, ATRX mutation, or del12q; low risk: lack of any of these three alterations. The ability of RB1 and ATRX alterations to stratify STLMS was validated in an external AACR GENIE cohort. In ULMS, a 3-tier genomic risk stratification was significant for both PFS and DSS: high risk: concurrent TP53 mutation and chr20q amplification/ATRX mutations; intermediate risk: presence of TP53 mutation, ATRX mutation, or amp20q; low risk: lack of any of these three alterations. Longitudinal sequencing showed that most molecular alterations were early clonal events that persisted during disease progression. CONCLUSIONS: Compared with traditional clinicopathologic models, genomic risk stratification demonstrates superior prediction of clinical outcome in STLMS and is comparable in ULMS.


Subject(s)
Genomics , Leiomyosarcoma , Uterine Neoplasms , Humans , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Leiomyosarcoma/mortality , Female , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/mortality , Middle Aged , Aged , Genomics/methods , Adult , Risk Assessment/methods , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/mortality , Mutation , Male , Aged, 80 and over , Prognosis , Biomarkers, Tumor/genetics
6.
Genes Chromosomes Cancer ; 63(3): e23227, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517106

ABSTRACT

AIMS: Kinase fusion-positive soft tissue tumors represent an emerging, molecularly defined group of mesenchymal tumors with a wide morphologic spectrum and diverse activating kinases. Here, we present two cases of soft tissue tumors with novel LTK fusions. METHODS AND RESULTS: Both cases presented as acral skin nodules (big toe and middle finger) in pediatric patients (17-year-old girl and 2-year-old boy). The tumors measured 2 and 3 cm in greatest dimension. Histologically, both cases exhibited bland-looking spindle cells infiltrating adipose tissue and accompanied by collagenous stroma. One case additionally displayed perivascular hyalinization and band-like stromal collagen. Both cases exhibited focal S100 staining, and one case had patchy coexpression of CD34. Targeted RNA-seq revealed the presence of novel in-frame MYH9::LTK and MYH10::LTK fusions, resulting in upregulation of LTK expression. Of interest, DNA methylation-based unsupervised clustering analysis in one case showed that the tumor clustered with dermatofibrosarcoma protuberans (DFSP). One tumor was excised with amputation with no local recurrence or distant metastasis at 18-month follow-up. The other case was initially marginally excised with local recurrence after one year, followed by wide local excision, with no evidence of disease at 10 years of follow-up. CONCLUSIONS: This is the first reported case series of soft tissue tumors harboring LTK fusion, expanding the molecular landscape of soft tissue tumors driven by activating kinase fusions. Furthermore, studies involving a larger number of cases and integrated genomic analyses will be warranted to fully elucidate the pathogenesis and classification of these tumors.


Subject(s)
Neoplasms, Connective and Soft Tissue , Oncogene Proteins, Fusion , Skin Neoplasms , Soft Tissue Neoplasms , Adolescent , Child , Female , Humans , Male , Antigens, CD34/metabolism , Biomarkers, Tumor/genetics , Neoplasms, Connective and Soft Tissue/genetics , Neoplasms, Connective and Soft Tissue/pathology , Receptor Protein-Tyrosine Kinases , Skin Neoplasms/pathology , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Myosin Heavy Chains/genetics , Nonmuscle Myosin Type IIB/genetics
7.
J Pathol ; 263(1): 61-73, 2024 05.
Article in English | MEDLINE | ID: mdl-38332737

ABSTRACT

Alterations in kinase genes such as NTRK1/2/3, RET, and BRAF underlie infantile fibrosarcoma (IFS), the emerging entity 'NTRK-rearranged spindle cell neoplasms' included in the latest WHO classification, and a growing set of tumors with overlapping clinical and pathological features. In this study, we conducted a comprehensive clinicopathological and molecular analysis of 22 cases of IFS and other kinase gene-altered spindle cell neoplasms affecting both pediatric and adult patients. Follow-up periods for 16 patients ranged in length from 10 to 130 months (mean 38 months). Six patients were treated with targeted therapy, achieving a partial or complete response in five cases. Overall, three cases recurred and one metastasized. Eight patients were free of disease, five were alive with disease, and two patients died. All cases showed previously reported morphological patterns. Based on the cellularity and level of atypia, cases were divided into three morphological grade groups. S100 protein and CD34 were at least focally positive in 12/22 and 14/22 cases, respectively. Novel PWWP2A::RET, NUMA1::RET, ITSN1::RAF1, and CAPZA2::MET fusions, which we report herein in mesenchymal tumors for the first time, were detected by RNA sequencing. Additionally, the first uterine case with BRAF and EGFR mutations and CD34 and S100 co-expression is described. DNA sequencing performed in 13 cases uncovered very rare additional genetic aberrations. The CNV profiles showed that high-grade tumors demonstrate a significantly higher percentage of copy number gains and losses across the genome compared with low- and intermediate-grade tumors. Unsupervised clustering of the tumors' methylation profiles revealed that in 8/9 cases, the methylation profiles clustered with the IFS methylation class, irrespective of their clinicopathological or molecular features. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Fibrosarcoma , Neoplasms, Connective and Soft Tissue , Soft Tissue Neoplasms , Adult , Humans , Child , Receptor, trkA/genetics , Proto-Oncogene Proteins B-raf/genetics , Neoplasm Recurrence, Local/genetics , Fibrosarcoma/genetics , Fibrosarcoma/pathology , Soft Tissue Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Oncogene Proteins, Fusion/genetics
8.
Cancer Res ; 84(9): 1504-1516, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38335254

ABSTRACT

Chromoplexy is a phenomenon defined by large-scale chromosomal chained rearrangements. A previous study observed chromoplectic events in a subset of Ewing sarcomas (ES), which was linked to an increased relapse rate. Chromoplexy analysis could potentially facilitate patient risk stratification, particularly if it could be detected with clinically applied targeted next-generation sequencing (NGS) panels. Using DELLY, a structural variant (SV) calling algorithm that is part of the MSK-IMPACT pipeline, we characterized the spectrum of SVs in EWSR1-fused round cell sarcomas, including 173 ES and 104 desmoplastic small round cell tumors (DSRCT), to detect chromoplexy and evaluate its association with clinical and genomic features. Chromoplectic events were detected in 31% of the ES cases and 19% of the DSRCT cases. EWSR1 involvement accounted for 76% to 93% of these events, being rearranged with diverse noncanonical gene partners across the genome, involving mainly translocations but also intrachromosomal deletions and inversions. A major breakpoint cluster was located on EWSR1 exons 8-13. In a subset of cases, the SVs disrupted adjacent loci, forming deletion bridges. Longitudinal sequencing and breakpoint allele fraction analysis showed that chromoplexy is an early event that remains detectable throughout disease progression and likely develops simultaneously with the driver fusion. The presence of chromoplexy was validated in an external ES patient cohort with whole exome sequencing. Chromoplexy was significantly more likely to be present in cases that were metastatic at presentation. Together, this study identifies chromoplexy as a frequent genomic alteration in diverse EWSR1-rearranged tumors that can be captured by targeted NGS panels. SIGNIFICANCE: Chromoplexy is detectable using targeted NGS in a substantial portion of EWSR1-rearranged round cell sarcomas as an early and persistent clonal event, expanding the genomic complexity of fusion-associated sarcomas.


Subject(s)
Gene Rearrangement , High-Throughput Nucleotide Sequencing , RNA-Binding Protein EWS , Humans , RNA-Binding Protein EWS/genetics , High-Throughput Nucleotide Sequencing/methods , Female , Male , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Adult , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/pathology , Oncogene Proteins, Fusion/genetics , Adolescent , Young Adult , Middle Aged , Child , Bone Neoplasms/genetics , Bone Neoplasms/pathology
9.
Genes Chromosomes Cancer ; 63(2): e23226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380774

ABSTRACT

Epithelioid hemangioendothelioma (EHE) is a rare endothelial sarcoma associated with a high incidence of metastases and for which there are no standard treatment options. Based on disease-defining mutations, most EHEs are classified into two subtypes: WWTR1::CAMTA1-fused EHE or YAP1::TFE3-fused EHE. However, rare non-canonical fusions have been identified in clinical samples of EHE cases and are challenging to classify. In this study, we report the identification of a novel WWTR1::TFE3 fusion variant in an EHE patient using targeted RNA sequencing. Histologically, the tumor exhibited hybrid morphological characteristics between WWTR1::CAMTA1-fused EHE and YAP1::TFE3-fused EHE. In addition to the driver fusion, there were six additional secondary mutations identified, including a loss-of-function FANCA mutation. Furthermore, in vitro studies were conducted to investigate the tumorigenic function of the WWTR1::TFE3 fusion protein in NIH3T3 cells and demonstrated that WWTR1::TFE3 promotes colony formation in soft agar. Finally, as the wild-type WWTR1 protein relies on binding the TEAD family of transcription factors to affect gene transcription, mutation of the WWTR1 domain of the fusion protein to inhibit such binding abrogates the transformative effect of WWTR1::TFE3. Overall, we describe a novel gene fusion in EHE with a hybrid histological appearance between the two major genetic subtypes of EHE. Further cases of this very rare subtype of EHE will need to be identified to fully elucidate the clinical and pathological characteristics of this unusual subtype of EHE.


Subject(s)
Hemangioendothelioma, Epithelioid , Trans-Activators , Humans , Mice , Animals , Trans-Activators/genetics , Hemangioendothelioma, Epithelioid/genetics , Hemangioendothelioma, Epithelioid/pathology , NIH 3T3 Cells , Transcription Factors/genetics , Transcription Factors/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Gene Fusion , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins
10.
Am J Surg Pathol ; 48(4): 487-496, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38189436

ABSTRACT

Despite significant advances in their molecular pathogenesis, skeletal vascular tumors remain diagnostically challenging due to their aggressive radiologic appearance and significant morphologic overlap. Within the epithelioid category and at the benign end of the spectrum, recurrent FOS/FOSB fusions have defined most epithelioid hemangiomas, distinguishing them from epithelioid hemangioendothelioma and angiosarcoma. More recently, the presence of EWSR1/FUS :: NFATC1/2 fusions emerged as the genetic hallmark of a novel group of unusual vascular proliferations, often displaying epithelioid morphology, with alternating vasoformative and solid growth, variable atypia, reminiscent of composite hemangioendothelioma. In this study, we further our understanding and morphologic spectrum of NFATC -fusion positive vascular neoplasms by describing 9 new cases, including soft tissue locations and novel fusion partners. Combining with the initial cohort of 5 cases, a total of 14 patients were analyzed, showing slight female predilection and an age range of 10 to 66 (mean 42 y). Twelve patients had solitary lesions, while 2 had multifocal polyostotic (pelvic bones) disease. Overall, 12 lesions were intra-osseous and 2 in soft tissue. By targeted RNA Fusion panels or FISH, there were 6 cases of EWSR1::NFATC1 , 4 EWSR1::NFATC2 , 2 FUS::NFATC2 , 1 EWSR1 rearrangement, and 1 with a novel FABP4::NFATC2 fusion. Follow-up was available in 4 patients. One patient experienced 2 local recurrences, 11 and 15 years postdiagnosis, and one patient experienced progressive disease despite multimodality treatment (curettings, embolization, radiation) over 3 years. In summary, our extended investigation confirms that NFATC -related fusions define a distinct group of vascular neoplasms with variable architecture, epithelioid phenotype, and cytologic atypia, commonly located in the bone, occasionally multifocal and with potential for local recurrence and aggressive behavior but no metastatic potential. Molecular analysis is recommended in diagnostically challenging cases with atypical histology to exclude malignancy.


Subject(s)
Hemangioendothelioma, Epithelioid , Hemangioendothelioma , Hemangioma , Vascular Neoplasms , Humans , Female , Vascular Neoplasms/genetics , Vascular Neoplasms/therapy , Transcription Factors/genetics , Hemangioendothelioma, Epithelioid/pathology , NFATC Transcription Factors/genetics
11.
Pathology ; 56(2): 274-282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185613

ABSTRACT

Soft tissue sarcomas comprise a heterogeneous group of neoplasms. Although soft tissue malignancies make up only 2% of adult cancers, classification based on histomorphology presents a diagnostic challenge. Characterisation of soft tissue sarcomas by molecular analysis is rapidly evolving to improve diagnostic accuracy and develop targeted therapies. This review highlights the advances in molecular techniques, including current next-generation sequencing-based assays (fusion detection by RNA sequencing, targeted/whole exome sequencing, microRNA profiling), as well as emerging methods (liquid biopsies, DNA methylation profiling, single-cell molecular profiling and next-generation immunohistochemistry) for future clinical applications.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Adult , Humans , Sarcoma/diagnosis , Sarcoma/genetics , Sarcoma/pathology , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Liquid Biopsy , High-Throughput Nucleotide Sequencing/methods , Biomarkers
12.
Surg Pathol Clin ; 17(1): 25-29, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278605

ABSTRACT

Myxoid pleomorphic liposarcoma (MPLPS) shows a strong predilection for the mediastinum and can affect a wide age range. Clinically, MPLPS exhibits aggressive behavior and demonstrates a worse overall and progression-free survival than myxoid/round cell liposarcoma (MRLPS) and pleomorphic liposarcoma (PLPS). Histologically, MPLPS is characterized by hybrid morphologic features of MRLPS and PLPS, including myxoid stroma, chicken wire-like vasculature, univacuolated and multivacuolated lipoblasts, and high-grade pleomorphic sarcomatous components. In terms of molecular features, MPLPS is distinct from other lipomatous tumors as it harbors genome-wide loss of heterozygosity.


Subject(s)
Liposarcoma , Humans , Adult , Liposarcoma/diagnosis , Liposarcoma/genetics , Liposarcoma/pathology
13.
Genes Chromosomes Cancer ; 63(1): e23203, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37724942

ABSTRACT

Spindle cell mesenchymal neoplasms are a diverse and often challenging diagnostic group. While morphological impression is sufficient for some diagnoses, increasingly immunohistochemical and even molecular data is required to render an accurate diagnosis, which can lead to the characterization of new entities. We describe five cases of novel mesenchymal neoplasms with rearrangements in the NCOA2 and NCOA3 genes partnered with either CTCF or CRTC1. Three tumors occurred in the head and neck (palate, auditory canal), while the other two were in visceral organs (lung, urinary bladder). All cases occurred in adults (range 33-86) with a median age of 42 and fairly even sex distribution = (male-to-female = 3:2). Morphologically, they had similar features consisting of monotonous, bland spindle to ovoid cells with fascicular and reticular arrangements in a myxohyaline to collagenous stroma. However, immunophenotypically they had essentially a null phenotype, with only two tumors staining partially for CD34 and smooth muscle actin. Targeted RNA sequencing detected in-frame CTCF::NCOA2 (one case), CRTC1::NCOA2 (two cases), and CTCF::NCOA3 (two cases) fusions. Treatment was surgical resection in all cases. Local recurrence and/or distant metastases were not observed in any case (median follow-up, 7.5 months; range, 2-19 months). Given their morphologic, immunohistochemical, and molecular similarities, we believe that these cases may represent an emerging family of low-grade NCOA2/3-rearranged fibroblastic spindle cell neoplasms.


Subject(s)
Neoplasms, Connective and Soft Tissue , Soft Tissue Neoplasms , Adult , Humans , Male , Female , Fibroblasts/pathology , Base Sequence , Neoplasms, Connective and Soft Tissue/genetics , Phenotype , Biomarkers, Tumor/genetics , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Nuclear Receptor Coactivator 2/genetics
14.
Genes Chromosomes Cancer ; 63(1): e23198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658696

ABSTRACT

Composite hemangioendothelioma is a rare, locally aggressive, and rarely metastasizing vascular neoplasm which affects both children and adults. Recently, a number of gene fusions including YAP1::MAML2, PTBP1::MAML2, and EPC1::PHC2 have been detected in a small subset of cases with or without neuroendocrine expression. Herein, we present four additional cases with novel in-frame fusions. The cohort comprises two females and two males with a wide age range at diagnosis (24-80 years). Two tumors were deep involving the right brachial plexus and mediastinum, while the remaining were superficial (right plantar foot and abdominal wall). The size ranged from 1.5 to 4.8 cm in greatest dimension. Morphologically, all tumors had an admixture of at least two architectural patterns including retiform hemangioendothelioma, hemangioma, epithelioid hemangioendothelioma, or angiosarcoma. The tumors were positive for endothelial markers CD31 (3/3), ERG (4/4), and D2-40 (1/4, focal), while SMA was expressed in 2/3 highlighting the surrounding pericytes. Synaptophysin showed immunoreactivity in 2/3 cases. One patient had a local recurrence after 40 months, while two patients had no evidence of disease 4 months post-resection. Targeted RNA sequencing detected novel in-frame fusions in each of the cases: HSPG2::FGFR1, YAP1::FOXR1, ACTB::MAML2, and ARID1B::MAML2. The two cases with neuroendocrine expression occurred as superficial lesions and harbored YAP1::FOXR1 and ARID1B::MAML2 fusions. Our study expands on the molecular spectrum of this enigmatic tumor, further enhancing our current understanding of the disease.


Subject(s)
Hemangioendothelioma, Epithelioid , Hemangioendothelioma , Hemangioma , Adult , Male , Child , Female , Humans , Young Adult , Middle Aged , Aged , Aged, 80 and over , Hemangioendothelioma/pathology , Hemangioendothelioma, Epithelioid/genetics , Base Sequence , Diagnosis, Differential , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Heterogeneous-Nuclear Ribonucleoproteins , Polypyrimidine Tract-Binding Protein
15.
Genes Chromosomes Cancer ; 63(1): e23206, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37819540

ABSTRACT

We present two cases of malignant ossifying fibromyxoid tumor (OFMT) which eluded diagnosis due to compelling clinicopathologic mimicry, compounded by similarly elusive underlying molecular drivers. The first is of a clavicle mass in a 69 year-old female, which histologically showed an infiltrative nested and trabeculated proliferation of monomorphic cells giving rise to scattered spicules of immature woven bone. Excepting SATB2 positivity, the lesion showed an inconclusive immunoprofile which along with negative PHF1 FISH led to an initial diagnosis of high-grade osteosarcoma. Next generation sequencing (NGS) revealed a particularly rare CREBBP::BCORL1 fusion. The second illustrates the peculiar presentation of a dural-based mass in a 52 year-old female who presented with neurologic dyscrasias. Sections showed a sheeted monotonous proliferation of ovoid to spindle cells, but in contrast to Case #1, the tumor contained an exuberance of reticular osteoid and woven bone deposition mimicking malignant osteogenic differentiation. NGS showed a novel CREBZF::PHF1 fusion. Both tumors recurred locally less than 1 year post-operatively. As such we reiterate that careful morphologic examination is axiomatic to any diagnosis in our discipline, but this paradigm must shift to recognize that molecular diagnostics can provide closure where traditional tools have notable limitations.


Subject(s)
Bone Neoplasms , Fibroma, Ossifying , Fibroma , Osteosarcoma , Sarcoma , Soft Tissue Neoplasms , Female , Humans , Aged , Middle Aged , DNA-Binding Proteins , Fibroma, Ossifying/diagnosis , Fibroma, Ossifying/genetics , Fibroma, Ossifying/pathology , Osteogenesis , Polycomb-Group Proteins , Neoplasm Recurrence, Local , Fibroma/pathology , Osteosarcoma/diagnosis , Osteosarcoma/genetics , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Soft Tissue Neoplasms/pathology , Basic-Leucine Zipper Transcription Factors
16.
Virchows Arch ; 484(2): 369-375, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37999736

ABSTRACT

Cancer of unknown primary (CUP) presents a complex diagnostic challenge, characterized by metastatic tumors of unknown tissue origin and a dismal prognosis. This review delves into the emerging significance of artificial intelligence (AI) and machine learning (ML) in transforming the landscape of CUP diagnosis, classification, and treatment. ML approaches, trained on extensive molecular profiling data, have shown promise in accurately predicting tissue of origin. Genomic profiling, encompassing driver mutations and copy number variations, plays a pivotal role in CUP diagnosis by providing insights into tumor type-specific oncogenic alterations. Mutational signatures (MS), reflecting somatic mutation patterns, offer further insights into CUP diagnosis. Known MS with established etiology, such as ultraviolet (UV) light-induced DNA damage and tobacco exposure, have been identified in cases of dedifferentiated/transdifferentiated melanoma and carcinoma. Deep learning models that integrate gene expression data and DNA methylation patterns offer insights into tissue lineage and tumor classification. In digital pathology, machine learning algorithms analyze whole-slide images to aid in CUP classification. Finally, precision oncology, guided by molecular profiling, offers targeted therapies independent of primary tissue identification. Clinical trials assigning CUP patients to molecularly guided therapies, including targetable alterations and tumor mutation burden as an immunotherapy biomarker, have resulted in improved overall survival in a subset of patients. In conclusion, AI- and ML-driven approaches are revolutionizing CUP management by enhancing diagnostic accuracy. Precision oncology utilizing enhanced molecular profiling facilitates the identification of targeted therapies that transcend the need to identify the tissue of origin, ultimately improving patient outcomes.


Subject(s)
Neoplasms, Unknown Primary , Humans , Neoplasms, Unknown Primary/diagnosis , Neoplasms, Unknown Primary/genetics , Neoplasms, Unknown Primary/therapy , Gene Expression Profiling/methods , Artificial Intelligence , DNA Copy Number Variations , Precision Medicine
17.
Clin Cancer Res ; 30(6): 1079-1092, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37916971

ABSTRACT

Epithelioid sarcoma (EpS) is an ultra-rare malignant soft-tissue cancer mostly affecting adolescents and young adults. EpS often exhibits an unfavorable clinical course with fatal outcome in ∼50% of cases despite aggressive multimodal therapies combining surgery, chemotherapy, and irradiation. EpS is traditionally classified in a more common, less aggressive distal (classic) type and a rarer aggressive proximal type. Both subtypes are characterized by a loss of nuclear INI1 expression, most often following homozygous deletion of its encoding gene, SMARCB1-a core subunit of the SWI/SNF chromatin remodeling complex. In 2020, the EZH2 inhibitor tazemetostat was the first targeted therapy approved for EpS, raising new hopes. Still, the vast majority of patients did not benefit from this drug or relapsed rapidly. Further, other recent therapeutic modalities, including immunotherapy, are only effective in a fraction of patients. Thus, novel strategies, specifically targeted to EpS, are urgently needed. To accelerate translational research on EpS and eventually boost the discovery and development of new diagnostic tools and therapeutic options, a vibrant translational research community has formed in past years and held two international EpS digital expert meetings in 2021 and 2023. This review summarizes our current understanding of EpS from the translational research perspective and points to innovative research directions to address the most pressing questions in the field, as defined by expert consensus and patient advocacy groups.


Subject(s)
Sarcoma , Transcription Factors , Adolescent , Young Adult , Humans , Transcription Factors/genetics , DNA-Binding Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Homozygote , Consensus , Sequence Deletion , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Sarcoma/diagnosis , Sarcoma/genetics , Sarcoma/therapy
19.
NPJ Precis Oncol ; 7(1): 96, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730754

ABSTRACT

The genomic spectrum of rhabdomyosarcoma (RMS) progression from primary to relapse is not fully understood. In this pilot study, we explore the sensitivity of various targeted and whole-genome NGS platforms in order to assess the best genomic approach of using liquid biopsy in future prospective clinical trials. Moreover, we investigate 35 paired primary/relapsed RMS from two contributing institutions, 18 fusion-positive (FP-RMS) and 17 fusion-negative RMS (FN-RMS) by either targeted DNA or whole exome sequencing (WES). In 10 cases, circulating tumor DNA (ctDNA) from multiple timepoints through clinical care and progression was analyzed for feasibility of liquid biopsy in monitoring treatment response/relapse. ctDNA alterations were evaluated using a targeted 36-gene custom RMS panel at high coverage for single-nucleotide variation and fusion detection, and a shallow whole-genome sequencing for copy number variation. FP-RMS have a stable genome with relapse, with common secondary alterations CDKN2A/B, MYCN, and CDK4 present at diagnosis and impacting survival. FP-RMS lacking major secondary events at baseline acquire recurrent MYCN and AKT1 alterations. FN-RMS acquire a higher number of new alterations, most commonly SMARCA2 missense mutations. ctDNA analyses detect pathognomonic variants in all RMS patients within our collection at diagnosis, regardless of type of alterations, and confirmed at relapse in 86% of FP-RMS and 100% FN-RMS. Moreover, a higher number of fusion reads is detected with increased disease burden and at relapse in patients following a fatal outcome. These results underscore patterns of tumor progression and provide rationale for using liquid biopsy to monitor treatment response.

20.
Histopathology ; 83(6): 959-966, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37680034

ABSTRACT

AIMS: Angiofibroma of soft tissue is a benign soft tissue tumour characterised by bland spindle cells and a distinct branching vascular network. The majority of soft tissue angiofibromas harbour AHRR::NCOA2 gene fusions. Here we present three cases of EWSR1::GFI1B-fused soft tissue tumours that are morphologically most reminiscent of soft tissue angiofibroma. METHODS AND RESULTS: All three cases presented in male patients with an age range of 35-78 years (median = 54 years). Two cases presented as subcutaneous nodules on the trunk (posterior neck and chest wall); one was an intramuscular foot mass. The tumours were unencapsulated nodules with infiltrative margins ranging from 2.2 to 3.4 cm in greatest dimension. Histologically, the tumours contained uniformly bland fibroblastic spindle cells with ovoid to fusiform nuclei and delicate cytoplasmic processes embedded in a myxoid to myxocollagenous stroma. All three cases were characterised by a thin-walled, branching vascular network evenly distributed throughout the tumour. Overt cytological atypia or conspicuous mitotic activity was absent. The spindle cells had an essentially null immunophenotype. By targeted RNA sequencing, an in-frame gene fusion between EWSR1 exons 1-7 and GFI1B exons 6-11 or 7-11 was detected in all three cases. The tumours were marginally excised. For all three cases, there were no documented local recurrence or distant metastases during a limited follow-up period of 6-10 months. CONCLUSIONS: We propose that EWSR1::GFI1B may represent a novel fusion variant of soft tissue angiofibroma.


Subject(s)
Angiofibroma , Head and Neck Neoplasms , Soft Tissue Neoplasms , Humans , Male , Adult , Middle Aged , Aged , Angiofibroma/genetics , Angiofibroma/pathology , Gene Fusion , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Head and Neck Neoplasms/genetics , Exons , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , RNA-Binding Protein EWS/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...