Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Soc Cogn Affect Neurosci ; 19(1)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554289

ABSTRACT

Spatial trajectory planning and execution in a social context play a vital role in our daily lives. To study this process, participants completed a goal-directed task involving either observing a sequence of preferred goals and self-planning a trajectory (Self Sequencing) or observing and reproducing the entire trajectory taken by others (Other Sequencing). The results indicated that in the observation phase, witnessing entire trajectories created by others (Other Sequencing) recruited cerebellar mentalizing areas (Crus 2 and 1) and cortical mentalizing areas in the precuneus, ventral and dorsal medial prefrontal cortex and temporo-parietal junction more than merely observing several goals (Self Sequencing). In the production phase, generating a trajectory by oneself (Self Sequencing) activated Crus 1 more than merely reproducing the observed trajectories from others (Other Sequencing). Additionally, self-guided observation and planning (Self Sequencing) activated the cerebellar lobules IV and VIII more than Other Sequencing. Control conditions involving non-social objects and non-sequential conditions where the trajectory did not have to be (re)produced revealed no differences with the main Self and Other Sequencing conditions, suggesting limited social and sequential specificity. These findings provide insights into the neural mechanisms underlying trajectory observation and production by the self or others during social navigation.


Subject(s)
Cerebellum , Mentalization , Humans , Prefrontal Cortex , Parietal Lobe , Magnetic Resonance Imaging/methods , Brain Mapping
2.
Soc Cogn Affect Neurosci ; 19(1)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38536051

ABSTRACT

Social norms are pivotal in guiding social interactions. The current study investigated the potential contribution of the posterior cerebellum, a critical region involved in perceiving and comprehending the sequential dynamics of social actions, in detecting actions that either conform to or deviate from social norms. Participants engaged in a goal-directed task in which they observed others navigating towards a goal. The trajectories demonstrated either norm-violating (trespassing forbidden zones) or norm-following behaviors (avoiding forbidden zones). Results revealed that observing social norm-violating behaviors engaged the bilateral posterior cerebellar Crus 2 and the right temporoparietal junction (TPJ) from the mentalizing network, and the parahippocampal gyrus (PHG) to a greater extent than observing norm-following behaviors. These mentalizing regions were also activated when comparing social sequences against non-social and non-sequential control conditions. Reproducing norm-violating social trajectories observed earlier, activated the left cerebellar Crus 2 and the right PHG compared to reproducing norm-following trajectories. These findings illuminate the neural mechanisms in the cerebellum associated with detecting norm transgressions during social navigation, emphasizing the role of the posterior cerebellum in detecting and signaling deviations from anticipated sequences.


Subject(s)
Brain Mapping , Cerebellum , Magnetic Resonance Imaging , Humans , Cerebellum/physiology , Cerebellum/diagnostic imaging , Male , Female , Young Adult , Adult , Magnetic Resonance Imaging/methods , Social Norms , Social Perception , Social Behavior , Mentalization/physiology
3.
J Neurosci Res ; 102(2): e25311, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38400585

ABSTRACT

Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (n = 15) and without MCI (n = 20), and 35 age- and sex-matched controls without PD, with (n = 13) and without MCI (n = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, p = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (M = 54.26 ms) compared to sham (M = 38.98 ms), p = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: M = 69.07 ms; sham: M = 24.33 ms), p < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.


Subject(s)
Motor Cortex , Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Parkinson Disease/therapy , Motor Cortex/physiology , Learning/physiology , Reaction Time
4.
Cogn Emot ; : 1-17, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38186220

ABSTRACT

While interest grows in investigating sensory processing sensitivity (SPS), few studies have employed objective behavioural measures to directly explore the underlying attentional processing. The present study utilised two modified versions of the Emotional Attention Networks Test Integration (E-ANTI) to investigate whether and how emotion interacts with three attentional networks associated with SPS when emotion information was target-irrelevant (Experiment 1) and target-relevant (Experiment 2), respectively. Both experiments involved four manipulated within-subject factors: Signal (tone vs. no-tone), Cue Validity (valid vs. invalid), Flanker Congruency (congruent vs. incongruent), and Emotion (fearful vs. happy). Linear mixed models were employed, and three attentional networks were successfully captured in both experiments. In Experiment 1, we observed that as SPS increased, the difference in reaction time between valid and invalid cue conditions decreased, especially in incongruent trials. Participants rated fearful faces as more arousing than happy faces as SPS increased. In Experiment 2, we found that slow responding to fearful faces reduced as SPS increased, particularly in incongruent trials. The observed effects related to SPS in both experiments were particularly pronounced in incongruent conditions, suggesting that SPS may modulate attentional processes in high-conflict situations. Overall, higher SPS may be associated with increased cautiousness in conflict contexts.

5.
Eur J Neurosci ; 58(10): 4181-4194, 2023 11.
Article in English | MEDLINE | ID: mdl-37864365

ABSTRACT

Conventional transcranial direct-current stimulation (tDCS) delivered to the primary motor cortex (M1) has been shown to enhance implicit motor sequence learning (IMSL). Conventional tDCS targets M1 but also the motor association cortices (MAC), making the precise contribution of these areas to IMSL presently unclear. We aimed to address this issue by comparing conventional tDCS of M1 and MAC to 4 * 1 high-definition (HD) tDCS, which more focally targets M1. In this mixed-factorial, sham-controlled, crossover study in 89 healthy young adults, we used mixed-effects models to analyse sequence-specific and general learning effects in the acquisition and short- and long-term consolidation phases of IMSL, as measured by the serial reaction time task. Conventional tDCS did not influence general learning, improved sequence-specific learning during acquisition (anodal: M = 42.64 ms, sham: M = 32.87 ms, p = .041), and seemingly deteriorated it at long-term consolidation (anodal: M = 75.37 ms, sham: M = 86.63 ms, p = .019). HD tDCS did not influence general learning, slowed performance specifically in sequential blocks across all learning phases (all p's < .050), and consequently deteriorated sequence-specific learning during acquisition (anodal: M = 24.13 ms, sham: M = 35.67 ms, p = .014) and long-term consolidation (anodal: M = 60.03 ms, sham: M = 75.01 ms, p = .002). Our findings indicate that the observed superior conventional tDCS effects on IMSL are possibly attributable to a generalized stimulation of M1 and/or adjacent MAC, rather than M1 alone. Alternatively, the differential effects can be attributed to cathodal inhibition of other cortical areas involved in IMSL by the 4 * 1 HD tDCS return electrodes, and/or more variable electric field strengths induced by HD tDCS, compared with conventional tDCS.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Young Adult , Humans , Motor Cortex/physiology , Cross-Over Studies , Learning/physiology , Reaction Time/physiology
6.
Cogn Affect Behav Neurosci ; 23(6): 1482-1499, 2023 12.
Article in English | MEDLINE | ID: mdl-37821755

ABSTRACT

Previous studies have identified that the posterior cerebellum, which plays a role in processing temporal sequences in social events, is consistently and robustly activated when we predict future action sequences based on personality traits (Haihambo Haihambo et al. Social Cognitive and Affective Neuroscience 17(2), 241-251, 2022) and intentions (Haihambo et al. Cognitive, Affective, and Behavioral Neuroscience 23(2), 323-339, 2023). In the current study, we investigated whether these cerebellar areas are selectively activated when we predict the sequences of (inter)actions based on protagonists' preferences. For the first time, we also compared predictions based on person-to-person interactions or single person activities. Participants were instructed to predict actions of one single or two interactive protagonists by selecting them and putting them in the correct chronological order after being informed about one of the protagonists' preferences. These conditions were contrasted against nonsocial (involving objects) and nonsequencing (prediction without generating a sequence) control conditions. Results showed that the posterior cerebellar Crus 1, Crus 2, and lobule IX, alongside the temporoparietal junction and dorsal medial prefrontal cortex were more robustly activated when predicting sequences of behavior of two interactive protagonists, compared to one single protagonist and nonsocial objects. Sequence predictions based on one single protagonist recruited lobule IX activation in the cerebellum and more ventral areas of the medial prefrontal cortex compared to a nonsocial object. These cerebellar activations were not found when making predictions without sequences. Together, these findings suggest that cerebellar mentalizing areas are involved in social mentalizing processes which require temporal sequencing, especially when they involve social interactions, rather than behaviors of single persons.


Subject(s)
Cerebellum , Mentalization , Humans , Cerebellum/physiology , Prefrontal Cortex/physiology , Magnetic Resonance Imaging/methods , Mentalization/physiology , Social Behavior Disorders , Brain Mapping/methods
7.
Int. j. clin. health psychol. (Internet) ; 23(3)jul.-sep. 2023. ilus, tab, graf
Article in English | IBECS | ID: ibc-218532

ABSTRACT

Research on the involvement of the cerebellum in social behavior and its relationship with social mentalizing has just begun. Social mentalizing is the ability to attribute mental states such as desires, intentions, and beliefs to others. This ability involves the use of social action sequences which are believed to be stored in the cerebellum. In order to better understand the neurobiology of social mentalizing, we applied cerebellar transcranial direct current stimulation (tDCS) on 23 healthy participants in the MRI scanner, immediately followed by measuring their brain activity during a task that required to generate the correct sequence of social actions involving false (i.e., outdated) and true beliefs, social routines and non-social (control) events. The results revealed that stimulation decreased task performance along with decreased brain activation in mentalizing areas, including the temporoparietal junction and the precuneus. This decrease was strongest for true belief sequences compared to the other sequences. These findings support the functional impact of the cerebellum on the mentalizing network and belief mentalizing, contributing to the understanding of the role of the cerebellum in social sequences. (AU)


Subject(s)
Humans , Male , Female , Young Adult , Adult , Cerebellum , Magnetic Resonance Imaging , Transcranial Direct Current Stimulation , Pilot Projects , Theory of Mind
8.
Cerebellum ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608227

ABSTRACT

Although the human cerebellum has a surface that is about 80% of that of the cerebral cortex and has about four times as many neurons, its functional organization is still very much uncharted. Despite recent attempts to provide resting-state and task-based parcellations of the cerebellum, these two approaches lead to large discrepancies. This article describes a comprehensive task-based functional parcellation of the human cerebellum based on a large-scale functional database, NeuroSynth, involving an unprecedented diversity of tasks, which were reliably associated with ontological key terms referring to psychological functions. Involving over 44,500 participants from this database, we present a parcellation that exhibits replicability with earlier resting-state parcellations across cerebellar and neocortical structures. The functional parcellation of the cerebellum confirms the major networks revealed in prior work, including sensorimotor, directed (dorsal) attention, divided (ventral) attention, executive control, mentalizing (default mode) networks, tiny patches of a limbic network, and also a unilateral language network (but not the visual network), and the association of these networks with underlying ontological key terms confirms their major functionality. The networks are revealed at locations that are roughly similar to prior resting-state cerebellar parcellations, although they are less symmetric and more fragmented across the two hemispheres. This functional parcellation of the human cerebellum and associated key terms can provide a useful guide in designing studies to test specific functional hypotheses and provide a reference for interpreting the results.

9.
Acta Psychol (Amst) ; 236: 103918, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37071947

ABSTRACT

Studying autism might be a complex endeavor due to its clinical heterogeneity. Little is currently known about potential sex differences in autistic adults, especially regarding mentalizing and narrative coherence. In this study, male and female participants told a personal story about one of their most positive and most negative life events and performed two mentalizing tasks. One of these mentalizing tasks was a recently developed Picture and Verbal Sequencing task that has shown cerebellar recruitment, and which requires mentalizing in a sequential context (i.e., participants chronologically ordered scenarios that required true and false belief mentalizing). Our preliminary comparison shows that males were faster and more accurate on the Picture Sequencing task compared to female participants when ordering sequences involving false beliefs, but not true beliefs. No sex differences were found for the other mentalizing and narrative tasks. These results highlight the importance of looking at sex differences in autistic adults and provide a possible explanation for sex-related differences in daily life mentalizing functions, which suggest a need for more sensitive diagnosis and tailored support.


Subject(s)
Autistic Disorder , Mentalization , Theory of Mind , Humans , Male , Adult , Female , Narration
10.
Int. j. clin. health psychol. (Internet) ; 23(2): 1-11, abr.-jun. 2023. ilus, tab, graf
Article in English | IBECS | ID: ibc-213884

ABSTRACT

Accumulating evidence shows that the posterior cerebellum is involved in mentalizing inferences of social events by detecting sequence information in these events, and building and updating internal models of these sequences. By applying anodal and sham cerebellar transcranial direct current stimulation (tDCS) on the posteromedial cerebellum of healthy participants, and using a serial reaction time (SRT) task paradigm, the current study examined the causal involvement of the cerebellum in implicitly learning sequences of social beliefs of others (Belief SRT) and non-social colored shapes (Cognitive SRT). Apart from the social or cognitive domain differences, both tasks were structurally identical. Results of anodal stimulation (i.e., 2 mA for 20 min) during the social Belief SRT task, did not show significant improvement in reaction times, however it did reveal generally faster responses for the Cognitive SRT task. This improved performance could also be observed after the cessation of stimulation after 30 min, and up to one week later. Our findings suggest a general positive effect of anodal cerebellar tDCS on implicit non-social Cognitive sequence learning, supporting a causal role of the cerebellum in this learning process. We speculate that the lack of tDCS modulation of the social Belief SRT task is due to the familiar and overlearned nature of attributing social beliefs, suggesting that easy and automatized tasks leave little room for improvement through tDCS. (AU)


Subject(s)
Humans , Male , Female , Young Adult , Adult , Transcranial Direct Current Stimulation , Cerebellum , Cognition , Deep Brain Stimulation , Reaction Time
11.
Int J Clin Health Psychol ; 23(3): 100373, 2023.
Article in English | MEDLINE | ID: mdl-36793338

ABSTRACT

Research on the involvement of the cerebellum in social behavior and its relationship with social mentalizing has just begun. Social mentalizing is the ability to attribute mental states such as desires, intentions, and beliefs to others. This ability involves the use of social action sequences which are believed to be stored in the cerebellum. In order to better understand the neurobiology of social mentalizing, we applied cerebellar transcranial direct current stimulation (tDCS) on 23 healthy participants in the MRI scanner, immediately followed by measuring their brain activity during a task that required to generate the correct sequence of social actions involving false (i.e., outdated) and true beliefs, social routines and non-social (control) events. The results revealed that stimulation decreased task performance along with decreased brain activation in mentalizing areas, including the temporoparietal junction and the precuneus. This decrease was strongest for true belief sequences compared to the other sequences. These findings support the functional impact of the cerebellum on the mentalizing network and belief mentalizing, contributing to the understanding of the role of the cerebellum in social sequences.

12.
Cogn Affect Behav Neurosci ; 23(2): 323-339, 2023 04.
Article in English | MEDLINE | ID: mdl-36788200

ABSTRACT

Humans read the minds of others to predict their actions and efficiently navigate social environments, a capacity called mentalizing. Accumulating evidence suggests that the cerebellum, especially Crus 1 and 2, and lobule IX are involved in identifying the sequence of others' actions. In the current study, we investigated the neural correlates that underly predicting others' intentions and how this plays out in the sequence of their actions. We developed a novel intention prediction task, which required participants to put protagonists' behaviors in the correct chronological order based on the protagonists' honest or deceitful intentions (i.e., inducing true or false beliefs in others). We found robust activation of cerebellar lobule IX and key mentalizing areas in the neocortex when participants ordered protagonists' intentional behaviors compared with not ordering behaviors or to ordering object scenarios. Unlike a previous task that involved prediction based on personality traits that recruited cerebellar Crus 1 and 2, and lobule IX (Haihambo et al., 2021), the present task recruited only the cerebellar lobule IX. These results suggest that cerebellar lobule IX may be generally involved in social action sequence prediction, and that different areas of the cerebellum are specialized for distinct mentalizing functions.


Subject(s)
Mentalization , Neocortex , Humans , Intention , Cerebellum/physiology , Mentalization/physiology , Magnetic Resonance Imaging
13.
Neurosci Biobehav Rev ; 146: 105045, 2023 03.
Article in English | MEDLINE | ID: mdl-36646260

ABSTRACT

BYLEMANS, T., et al. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. NEUROSCI BIOBEHAV REV, 2022. - This review focuses on autistic adults and serves 4 purposes: (1) providing an overview of their difficulties regarding mentalizing (understanding others' mental states) and narrative coherence (structured storytelling), (2) highlighting the relations between both skills by examining behavioral observations and shared neural substrates, (3) providing an integrated perspective regarding novel diagnostic tools and support services, and (4) raising awareness of adult autism. We suggest that mentalizing and narrative coherence are related at the behavioral level and neural level. In addition to the traditional mentalizing network, the cerebellum probably serves as an important hub in shared cerebral networks implicated in mentalizing and narrative coherence. Future autism research and support services should tackle new questions within a framework of social cerebellar (dys)functioning.


Subject(s)
Autistic Disorder , Mentalization , Humans , Adult , Cerebellum , Communication
14.
Int J Clin Health Psychol ; 23(2): 100355, 2023.
Article in English | MEDLINE | ID: mdl-36415612

ABSTRACT

Accumulating evidence shows that the posterior cerebellum is involved in mentalizing inferences of social events by detecting sequence information in these events, and building and updating internal models of these sequences. By applying anodal and sham cerebellar transcranial direct current stimulation (tDCS) on the posteromedial cerebellum of healthy participants, and using a serial reaction time (SRT) task paradigm, the current study examined the causal involvement of the cerebellum in implicitly learning sequences of social beliefs of others (Belief SRT) and non-social colored shapes (Cognitive SRT). Apart from the social or cognitive domain differences, both tasks were structurally identical. Results of anodal stimulation (i.e., 2 mA for 20 min) during the social Belief SRT task, did not show significant improvement in reaction times, however it did reveal generally faster responses for the Cognitive SRT task. This improved performance could also be observed after the cessation of stimulation after 30 min, and up to one week later. Our findings suggest a general positive effect of anodal cerebellar tDCS on implicit non-social Cognitive sequence learning, supporting a causal role of the cerebellum in this learning process. We speculate that the lack of tDCS modulation of the social Belief SRT task is due to the familiar and overlearned nature of attributing social beliefs, suggesting that easy and automatized tasks leave little room for improvement through tDCS.

15.
Cereb Cortex ; 33(10): 6366-6381, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36573440

ABSTRACT

Prior studies suggest that the cerebellum contributes to the prediction of action sequences as well as the detection of social violations. In this dynamic causal modeling study, we explored the effective connectivity of the cerebellum with the cerebrum in processing social action sequences. A first model aimed to explore functional cerebello-cerebral connectivity when learning trait/stereotype-implying action sequences. We found many significant bidirectional connectivities between mentalizing areas of the cerebellum and the cerebrum including the temporo-parietal junction (TPJ) and medial prefrontal cortex (mPFC). Within the cerebrum, we found significant connectivity between the right TPJ and the mPFC, and between the TPJ bilaterally. A second model aimed to investigate cerebello-cerebral connectivity when conflicting information arises. We found many significant closed loops between the cerebellum and cerebral mentalizing (e.g. dorsal mPFC) and executive control areas (e.g. medial and lateral prefrontal cortices). Additional closed loops were found within the cerebral mentalizing and executive networks. The current results confirm prior research on effective connectivity linking the cerebellum with mentalizing areas in the cerebrum for predicting social sequences, and extend it to cerebral executive areas for social violations. Overall, this study emphasizes the critical role of cerebello-cerebral connectivity in understanding social sequences.


Subject(s)
Cerebrum , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Cerebellum/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Brain Mapping
16.
Soc Cogn Affect Neurosci ; 18(1)2023 02 23.
Article in English | MEDLINE | ID: mdl-35866545

ABSTRACT

The posterior cerebellum contributes to dynamic social cognition by building representations and predictions about sequences in which social interactions typically take place. However, the extent to which violations of prior social expectations during human interaction activate the cerebellum remains largely unknown. The present study examined inconsistent actions, which violate the expectations of desired goal outcomes, by using a social navigation paradigm in which a protagonist presented a gift to another agent that was liked or not. As an analogous non-social control condition, a pen was transported via an assembly line and filled with ink that matched the pen's cap or not. Participants (n = 25) were required to memorize and subsequently reproduce the sequence of the protagonist's or pen's trajectory. As hypothesized, expectation violations in social (vs non-social) sequencing were associated with activation in the posterior cerebellum (Crus 1/2) and other cortical mentalizing regions. In contrast, non-social (vs social) sequencing recruited cerebellar lobules IV-V, the action observation network and the navigation-related parahippocampal gyrus. There was little effect in comparison with a social non-sequencing control condition, where participants only had to observe the trajectory. The findings provide further evidence of cerebellar involvement in signaling inconsistencies in social outcomes of goal-directed navigation.


Subject(s)
Cerebellum , Cognition , Humans , Cerebellum/physiology , Cognition/physiology , Social Interaction , Motivation , Emotions , Magnetic Resonance Imaging , Brain Mapping
17.
Soc Cogn Affect Neurosci ; 18(1)2023 01 09.
Article in English | MEDLINE | ID: mdl-35796503

ABSTRACT

To study social sequence learning, earlier functional magnetic resonance imaging (fMRI) studies investigated the neural correlates of a novel Belief Serial Reaction Time task in which participants learned sequences of beliefs held by protagonists. The results demonstrated the involvement of the mentalizing network in the posterior cerebellum and cerebral areas (e.g. temporoparietal junction, precuneus and temporal pole) during implicit and explicit social sequence learning. However, little is known about the neural functional interaction between these areas during this task. Dynamic causal modeling analyses for both implicit and explicit belief sequence learning revealed that the posterior cerebellar Crus I & II were effectively connected to cerebral mentalizing areas, especially the bilateral temporoparietal junction, via closed loops (i.e. bidirectional functional connections that initiate and terminate at the same cerebellar and cerebral areas). There were more closed loops during implicit than explicit learning, which may indicate that the posterior cerebellum may be more involved in implicitly learning sequential social information. Our analysis supports the general view that the posterior cerebellum receives incoming signals from critical mentalizing areas in the cerebrum to identify sequences of social actions and then sends signals back to the same cortical mentalizing areas to better prepare for others' social actions and one's responses to it.


Subject(s)
Cerebellum , Parietal Lobe , Humans , Cerebellum/diagnostic imaging , Cerebellum/physiology , Parietal Lobe/physiology , Temporal Lobe/physiology , Learning , Reaction Time , Magnetic Resonance Imaging , Brain Mapping/methods
18.
Cerebellum ; 22(4): 559-577, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35648333

ABSTRACT

Recent research has suggested that the posterior cerebellum encodes predictions and sequences of social actions, and also supports detecting inconsistent trait-implying actions of individuals as discussed by Pu et al. (2020, 2021). However, little is known about the role of the posterior cerebellum in detecting sequencing and inconsistencies by a group of individuals during social interaction. Therefore, the present study investigates these cerebellar functions during inconsistent trait-implying actions in a cooperative context. We presented scenarios in which two fictitious protagonists work together to accomplish a common (positive or negative) goal, followed by six sentences describing actions that implied a personality trait of the protagonists. Participants had to memorize the sequence of these actions. Crucially, the implied trait of the actions of the first protagonist contributed to achieving the goal, whereas the implied trait of the second protagonist was either consistent or inconsistent with that goal. As comparison, we added control conditions where participants had to memorize sequences of nonsocial events (implying the same characteristic of two objects), or simply read the social actions without memorizing their order. We found that the posterior cerebellum was activated while memorizing the sequence of social actions compared to simply reading these actions. More importantly, the cerebellar Crus was more strongly activated when detecting inconsistent (as opposed to consistent) actions, especially when inconsistent negative actions impeded a positive goal, relative to consistent negative actions that supported a negative goal. In conclusion, these findings confirm the crucial role of the posterior cerebellum in memorizing social action sequences and extend the cerebellar function in identifying inconsistencies in an individual's actions in a social collaborative context.


Subject(s)
Cerebellum , Language , Humans
19.
Front Behav Neurosci ; 16: 941272, 2022.
Article in English | MEDLINE | ID: mdl-36062258

ABSTRACT

Adults diagnosed with autism experience difficulties with understanding the mental states of others, or themselves (mentalizing) and with adequately sequencing personal stories (narrative coherence). Given that the posterior cerebellum is implicated in both skills, as well as in the etiology of autism, we developed a narrative sequencing and mentalizing training for autistic adults. Participants with an official autism diagnosis were randomly assigned to a Training group (n = 17) or a waiting-list Control group (n = 15). The Training group took part in six weekly sessions in groups of three participants lasting each about 60 min. During training, participants had to (re)tell stories from the perspective of the original storyteller and answer questions that required mentalizing. We found significant improvements in mentalizing about others' beliefs and in narrative coherence for the Training group compared to the Control group immediately after the training compared to before the training. Almost all participants from the Training group expressed beneficial effects of the training on their mood and half of the participants reported positive effects on their self-confidence in social situations. All participants recommended the current training to others. Results are discussed in light of cerebellar theories on sequencing of social actions during mentalizing. Further improvements to the program are suggested. Our results highlight the potential clinical utility of adopting a neuroscience-informed approach to developing novel therapeutic interventions for autistic populations.

20.
Cogn Affect Behav Neurosci ; 22(5): 1090-1107, 2022 10.
Article in English | MEDLINE | ID: mdl-35411417

ABSTRACT

Recent research has indicated that the posterior cerebellum plays a crucial role in social cognition by encoding sequences of social actions. This study investigates its role in learning sequences of stereotype-implying actions by group members. We presented a set of five sentences that each described a group member who performed either stereotype-consistent or inconsistent actions. Participants were instructed to memorize the temporal order of the sentences and infer a common stereotype of the group. As a comparison, we included control conditions where participants had to memorize sequences of nonsocial consistent events or simply read stereotype-consistent sentences without memorizing their order. The results showed that the posterior cerebellum was strongly activated when participants were memorizing the order of the social actions, as opposed to simply reading these social actions. More importantly, when the social actions were inconsistent as opposed to consistent with the stereotype of the group, the posterior cerebellum was activated more strongly. This activation occurred together with cortical recruitment of the mentalizing network involving the dorsomedial prefrontal cortex (dmPFC) during social actions, and additionally the conflict monitoring network involving the lateral prefrontal cortex (PFC) and posterior medial frontal cortex (pmFC) during stereotype-inconsistent actions. These findings suggest that the cerebellum supports not only learning of low-level action sequences, but also of their high-level social implications.


Subject(s)
Magnetic Resonance Imaging , Mentalization , Cerebellum/physiology , Humans , Mentalization/physiology , Prefrontal Cortex/physiology , Reading
SELECTION OF CITATIONS
SEARCH DETAIL
...