Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Neurosci Methods ; 405: 110107, 2024 May.
Article in English | MEDLINE | ID: mdl-38460797

ABSTRACT

OBJECTIVE: We predicted that accelerometry would be a viable alternative to electromyography (EMG) for assessing fundamental Transcranial Magnetic Stimulation (TMS) measurements (e.g. Resting Motor Threshold (RMT), recruitment curves, latencies). NEW METHOD: 21 participants were tested. TMS evoked responses were recorded with EMG on the First Dorsal Interosseus muscle and an accelerometer on the index fingertip. TMS was used to determine the (EMG-defined) RMT, then delivered at a range of intensities allowing determination of both the accelerometry-defined RMT and measurement of recruitment curves. RESULTS: RMT assessed by EMG was significantly lower than for accelerometry (t(19)=-3.84, p<.001, mean±SD EMG = 41.1±5.28% MSO (maximum stimulator output), Jerk = 44.55±5.82% MSO), though RMTs calculated for each technique were highly correlated (r(18)=.72, p<.001). EMG/Accelerometery recruitment curves were strongly correlated (r(14)=.98, p<.001), and Bayesian model comparison indicated they were equivalent (BF01>9). Latencies measured with EMG were lower and more consistent than those identified using accelerometry (χ2(1)=80.38, p<.001, mean±SD EMG=27.01±4.58 ms, Jerk=48.4±15.33 ms). COMPARISON WITH EXISTING METHODS: EMG is used as standard by research groups that study motor control and neurophysiology, but accelerometry has not yet been considered as a potential tool to assess measurements such as the overall magnitude and latency of the evoked response. CONCLUSIONS: While EMG provides more sensitive and reliable measurements of RMT and latency, accelerometry provides a reliable alternative to measure of the overall magnitude of TMS evoked responses.


Subject(s)
Motor Cortex , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Bayes Theorem , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Electromyography , Muscle, Skeletal/physiology
2.
Cereb Cortex ; 33(23): 11339-11353, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37804253

ABSTRACT

Dual-site transcranial magnetic stimulation has been widely employed to investigate the influence of cortical structures on the primary motor cortex. Here, we leveraged this technique to probe the causal influence of two key areas of the medial frontal cortex, namely the supplementary motor area and the medial orbitofrontal cortex, on primary motor cortex. We show that supplementary motor area stimulation facilitates primary motor cortex activity across short (6 and 8 ms) and long (12 ms) inter-stimulation intervals, putatively recruiting cortico-cortical and cortico-subcortico-cortical circuits, respectively. Crucially, magnetic resonance imaging revealed that this facilitatory effect depended on a key morphometric feature of supplementary motor area: individuals with larger supplementary motor area volumes exhibited more facilitation from supplementary motor area to primary motor cortex for both short and long inter-stimulation intervals. Notably, we also provide evidence that the facilitatory effect of supplementary motor area stimulation at short intervals is unlikely to arise from spinal interactions of volleys descending simultaneously from supplementary motor area and primary motor cortex. On the other hand, medial orbitofrontal cortex stimulation moderately suppressed primary motor cortex activity at both short and long intervals, irrespective of medial orbitofrontal cortex volume. These results suggest that dual-site transcranial magnetic stimulation is a fruitful approach to investigate the differential influence of supplementary motor area and medial orbitofrontal cortex on primary motor cortex activity, paving the way for the multimodal assessment of these fronto-motor circuits in health and disease.


Subject(s)
Motor Cortex , Humans , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
3.
J Neurophysiol ; 130(3): 516-523, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37529836

ABSTRACT

The emergence of consciousness is one of biology's biggest mysteries. During the past two decades, a major effort has been made to identify the neural correlates of consciousness, but in comparison, little is known about the physiological mechanisms underlying first-person subjective experience. Attention is considered the gateway of information to consciousness. Recent work suggests that the breathing phase (i.e., inhalation vs. exhalation) modulates attention, in such a way that attention directed toward exteroceptive information would increase during inhalation. One key hypothesis emerging from this work is that inhalation would improve perceptual awareness and near-threshold decision-making. The present study directly tested this hypothesis. We recorded the breathing rhythms of 30 humans performing a near-threshold decision-making task, in which they had to decide whether a liminal Gabor was tilted to the right or the left (objective decision task) and then to rate their perceptual awareness of the Gabor orientation (subjective decision task). In line with our hypothesis, the data revealed that, relative to exhalation, inhalation improves perceptual awareness and speeds up objective decision-making, without impairing accuracy. Overall, the present study builds on timely questions regarding the physiological mechanisms underlying consciousness and shows that breathing shapes the emergence of subjective experience and decision-making.NEW & NOTEWORTHY Breathing is a ubiquitous biological rhythm in animal life. However, little is known about its effect on consciousness and decision-making. Here, we measured the respiratory rhythm of humans performing a near-threshold discrimination experiment. We show that inhalation, compared with exhalation, improves perceptual awareness and accelerates decision-making while leaving accuracy unaffected.


Subject(s)
Attention , Awareness , Humans , Awareness/physiology , Consciousness/physiology , Respiration , Exhalation , Decision Making/physiology
4.
J Neurosci ; 43(6): 882-884, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36754638
5.
Mov Disord ; 37(12): 2396-2406, 2022 12.
Article in English | MEDLINE | ID: mdl-36121426

ABSTRACT

BACKGROUND: In Parkinson's disease (PD), neurophysiological abnormalities within the primary motor cortex (M1) have been shown to contribute to bradykinesia, but exact modalities are still uncertain. We propose that such motor slowness could involve alterations in mechanisms underlying movement preparation, especially the suppression of corticospinal excitability-called "preparatory suppression"-which is considered to propel movement execution by increasing motor neural gain in healthy individuals. METHODS: On two consecutive days, 29 PD patients (on and off medication) and 29 matched healthy controls (HCs) underwent transcranial magnetic stimulation over M1, eliciting motor-evoked potentials (MEPs) in targeted hand muscles, while they were either at rest or preparing a left- or right-hand response in an instructed-delay choice reaction time task. Preparatory suppression was assessed by expressing MEP amplitudes during movement preparation relative to rest. RESULTS: Contrary to HCs, PD patients showed a lack of preparatory suppression when the side of the responding hand was analyzed, especially when the latter was the most affected one. This deficit, which did not depend on dopamine medication, increased with disease duration and also tended to correlate with motor impairment, as measured by the Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III (both total and bradykinesia scores). CONCLUSIONS: Our novel findings indicate that preparatory suppression fades in PD, in parallel with worsening motor symptoms, including bradykinesia. Such results suggest that an alteration in this marker of intact movement preparation could indeed cause motor slowness and support its use in future studies on the relation between M1 alterations and motor impairment in PD. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Motor Cortex , Parkinson Disease , Humans , Motor Cortex/physiology , Hypokinesia/etiology , Evoked Potentials, Motor/physiology , Movement/physiology , Transcranial Magnetic Stimulation/methods
6.
Front Hum Neurosci ; 16: 864590, 2022.
Article in English | MEDLINE | ID: mdl-35754776

ABSTRACT

Errors and their consequences are typically studied by investigating changes in decision speed and accuracy in trials that follow an error, commonly referred to as "post-error adjustments". Many studies have reported that subjects slow down following an error, a phenomenon called "post-error slowing" (PES). However, the functional significance of PES is still a matter of debate as it is not always adaptive. That is, it is not always associated with a gain in performance and can even occur with a decline in accuracy. Here, we hypothesized that the nature of PES is influenced by one's speed-accuracy tradeoff policy, which determines the overall level of choice accuracy in the task at hand. To test this hypothesis, we had subjects performing a task in two distinct contexts (separate days), which either promoted speed (hasty context) or cautiousness (cautious context), allowing us to consider post-error adjustments according to whether subjects performed choices with a low or high accuracy level, respectively. Accordingly, our data indicate that post-error adjustments varied according to the context in which subjects performed the task, with PES being solely significant in the hasty context (low accuracy). In addition, we only observed a gain in performance after errors in a specific trial type, suggesting that post-error adjustments depend on a complex combination of processes that affect the speed of ensuing actions as well as the degree to which such PES comes with a gain in performance.

7.
iScience ; 25(5): 104290, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35573187

ABSTRACT

Reward timing, that is, the delay after which reward is delivered following an action is known to strongly influence reinforcement learning. Here, we asked if reward timing could also modulate how people learn and consolidate new motor skills. In 60 healthy participants, we found that delaying reward delivery by a few seconds influenced motor learning. Indeed, training with a short reward delay (1 s) induced continuous improvements in performance, whereas a long reward delay (6 s) led to initially high learning rates that were followed by an early plateau in the learning curve and a lower performance at the end of training. Participants who learned the skill with a long reward delay also exhibited reduced overnight memory consolidation. Overall, our data show that reward timing affects the dynamics and consolidation of motor learning, a finding that could be exploited in future rehabilitation programs.

9.
PLoS Biol ; 20(4): e3001598, 2022 04.
Article in English | MEDLINE | ID: mdl-35389982

ABSTRACT

Humans and other animals are able to adjust their speed-accuracy trade-off (SAT) at will depending on the urge to act, favoring either cautious or hasty decision policies in different contexts. An emerging view is that SAT regulation relies on influences exerting broad changes on the motor system, tuning its activity up globally when hastiness is at premium. The present study aimed to test this hypothesis. A total of 50 participants performed a task involving choices between left and right index fingers, in which incorrect choices led either to a high or to a low penalty in 2 contexts, inciting them to emphasize either cautious or hasty policies. We applied transcranial magnetic stimulation (TMS) on multiple motor representations, eliciting motor-evoked potentials (MEPs) in 9 finger and leg muscles. MEP amplitudes allowed us to probe activity changes in the corresponding finger and leg representations, while participants were deliberating about which index to choose. Our data indicate that hastiness entails a broad amplification of motor activity, although this amplification was limited to the chosen side. On top of this effect, we identified a local suppression of motor activity, surrounding the chosen index representation. Hence, a decision policy favoring speed over accuracy appears to rely on overlapping processes producing a broad (but not global) amplification and a surround suppression of motor activity. The latter effect may help to increase the signal-to-noise ratio of the chosen representation, as supported by single-trial correlation analyses indicating a stronger differentiation of activity changes in finger representations in the hasty context.


Subject(s)
Motor Cortex , Animals , Evoked Potentials, Motor/physiology , Fingers/physiology , Humans , Motor Activity , Motor Cortex/physiology , Muscle, Skeletal/physiology , Transcranial Magnetic Stimulation
10.
iScience ; 24(7): 102821, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34345810

ABSTRACT

Besides relying heavily on sensory and reinforcement feedback, motor skill learning may also depend on the level of motivation experienced during training. Yet, how motivation by reward modulates motor learning remains unclear. In 90 healthy subjects, we investigated the net effect of motivation by reward on motor learning while controlling for the sensory and reinforcement feedback received by the participants. Reward improved motor skill learning beyond performance-based reinforcement feedback. Importantly, the beneficial effect of reward involved a specific potentiation of reinforcement-related adjustments in motor commands, which concerned primarily the most relevant motor component for task success and persisted on the following day in the absence of reward. We propose that the long-lasting effects of motivation on motor learning may entail a form of associative learning resulting from the repetitive pairing of the reinforcement feedback and reward during training, a mechanism that may be exploited in future rehabilitation protocols.

11.
J Neurophysiol ; 126(2): 361-372, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34191623

ABSTRACT

Humans and other animals often need to balance the desire to gather sensory information (to make the best choice) with the urgency to act, facing a speed-accuracy tradeoff (SAT). Given the ubiquity of SAT across species, extensive research has been devoted to understanding the computational mechanisms allowing its regulation at different timescales, including from one context to another, and from one decision to another. However, animals must frequently change their SAT on even shorter timescales-that is, over the course of an ongoing decision-and little is known about the mechanisms that allow such rapid adaptations. The present study aimed at addressing this issue. Human subjects performed a decision task with changing evidence. In this task, subjects received rewards for correct answers but incurred penalties for mistakes. An increase or a decrease in penalty occurring halfway through the trial promoted rapid SAT shifts, favoring speeded decisions either in the early or in the late stage of the trial. Importantly, these shifts were associated with stage-specific adjustments in the accuracy criterion exploited for committing to a choice. Those subjects who decreased the most their accuracy criterion at a given decision stage exhibited the highest gain in speed, but also the highest cost in terms of performance accuracy at that time. Altogether, the current findings offer a unique extension of previous work, by suggesting that dynamic cha*nges in accuracy criterion allow the regulation of the SAT within the timescale of a single decision.NEW & NOTEWORTHY Extensive research has been devoted to understanding the mechanisms allowing the regulation of the speed-accuracy tradeoff (SAT) from one context to another and from one decision to another. Here, we show that humans can voluntarily change their SAT on even shorter timescales-that is, over the course of a decision. These rapid SAT shifts are associated with dynamic adjustments in the accuracy criterion exploited for committing to a choice.


Subject(s)
Choice Behavior/physiology , Adult , Female , Humans , Male , Reaction Time , Reward
12.
Sci Rep ; 11(1): 7454, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33811223

ABSTRACT

Prospective judgments about one's capability to perform an action are assumed to involve mental simulation of the action. Previous studies of motor imagery suggest this simulation is supported by a large fronto-parietal network including the motor system. Experiment 1 used fMRI to assess the contribution of this fronto-parietal network to judgments about one's capacity to grasp objects of different sizes between index and thumb. The neural network underlying prospective graspability judgments overlapped the fronto-parietal network involved in explicit motor imagery of grasping. However, shared areas were located in the right hemisphere, outside the motor cortex, and were also activated during perceptual length judgments, suggesting a contribution to object size estimate rather than motor simulation. Experiment 2 used TMS over the motor cortex to probe transient excitability changes undetected with fMRI. Results show that graspability judgments elicited a selective increase of excitability in the thumb and index muscles, which was maximal before the object display and intermediate during the judgment. Together, these findings suggest that prospective action judgments do not rely on the motor system to simulate the action per se but to refresh the memory of one's maximal grip aperture and facilitate its comparison with object size in right fronto-parietal areas.


Subject(s)
Frontal Lobe/physiology , Judgment , Motor Activity/physiology , Parietal Lobe/physiology , Brain/physiology , Brain Mapping , Evoked Potentials, Motor/physiology , Female , Hand Strength/physiology , Humans , Magnetic Resonance Imaging , Male , Time Factors , Transcranial Magnetic Stimulation , Young Adult
13.
J Neurophysiol ; 124(6): 1656-1666, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32997598

ABSTRACT

Training can improve motor skills and modify neural activity at rest and during movement execution. Learning-related modulations may also concern motor preparation but the neural correlates and the potential behavioral relevance of such adjustments remain unclear. In humans, preparatory processes have been largely investigated using transcranial magnetic stimulation (TMS) with several studies reporting decreased corticospinal excitability (CSE) relative to a baseline measure at rest; a phenomenon called preparatory suppression. Here, we investigated the effect of motor training on such preparatory suppression, in relation to resting CSE, in humans. We trained participants to initiate quick movements in an instructed-delay reaction time (RT) task and used TMS to investigate changes in CSE over the practice blocks. Training on the task speeded up RTs, with no repercussion on error rates. Training also increased resting CSE. Most interestingly, we found that CSE during action preparation did not mirror the training-related increase observed at rest. Rather, compared with the rising baseline, the degree of preparatory suppression strengthened with practice. This training-related change in preparatory suppression (but not the changes in baseline CSE) predicted RT gains: the subjects showing a greater strengthening of preparatory suppression were also those exhibiting larger gains in RTs. Finally, such a relationship between RTs and preparatory suppression was also evident at the single-trial level, though only in the nonselected effector: RTs were generally faster in trials where preparatory suppression was deeper. These findings suggest that training induces changes in motor preparatory processes that are linked to an enhanced ability to initiate fast movements.NEW & NOTEWORTHY Movement preparation involves a broad suppression in the excitability of the corticospinal pathway, a phenomenon called preparatory suppression. Here, we show that motor training strengthens preparatory suppression and that this strengthening is associated with faster reaction times. Our findings highlight a key role of preparatory suppression in training-driven behavioral improvements.


Subject(s)
Motor Cortex/physiology , Movement , Practice, Psychological , Pyramidal Tracts/physiology , Adult , Evoked Potentials, Motor , Female , Humans , Male , Reaction Time , Transcranial Magnetic Stimulation , Young Adult
14.
J Neurosci ; 40(34): 6474-6476, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32817389

Subject(s)
Reward
15.
Neuroimage ; 213: 116746, 2020 06.
Article in English | MEDLINE | ID: mdl-32198049

ABSTRACT

The motor system displays strong changes in neural activity during action preparation. In the past decades, several techniques, including transcranial magnetic stimulation (TMS), electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have allowed us to gain insights into the functional role of such preparatory activity in humans. More recently, new TMS tools have been proposed to study the mechanistic principles underlying the changes in corticospinal excitability during action preparation. The aim of the present review is to provide a comprehensive description of these advanced methods and to discuss the new knowledge they give access to, relative to other existing approaches. We start with a brief synthesis of the work that has been achieved so far using classic TMS protocols during action preparation, such as the so-called single-pulse and paired-pulse techniques. We then highlight three new approaches that recently arose in the field of action preparation, including (1) the exploitation of TMS current direction, known as directional TMS, which enables investigating different subsets of neurons in the primary motor cortex, (2) the use of paired-pulse TMS to study the suppressive influence of the cerebellum on corticospinal excitability and (3) the development of a double-coil TMS approach, which facilitates the study of bilateral changes in corticospinal excitability. The aim of the present article is twofold: we seek to provide a comprehensive description of these advanced TMS tools and to discuss their bearings for the field of action preparation with respect to more traditional TMS approaches, as well as to neuroimaging techniques such as EEG or fMRI. Finally, we point out perspectives for fundamental and clinical research that arise from the combination of these methods, widening the horizon of possibilities for the investigation of the human motor system, both in health and disease.


Subject(s)
Motor Activity/physiology , Motor Cortex/physiology , Pyramidal Tracts/physiology , Transcranial Magnetic Stimulation/methods , Humans , Motor Neurons/physiology
16.
Neuroscientist ; 26(4): 359-379, 2020 08.
Article in English | MEDLINE | ID: mdl-31959037

ABSTRACT

Interactive behaviors rely on the operation of several processes allowing the control of actions, including their selection, withholding, and cancellation. The corticospinal system provides a unique route through which multiple brain circuits can exert control over bodily motor acts. In humans, the influence of these modulatory circuits on the corticospinal system can be probed using various transcranial magnetic stimulation (TMS) protocols. Here, we review neural data from TMS studies at the basis of our current understanding of how diverse pathways-including intra-cortical, trans-cortical, and subcortico-cortical circuits-contribute to action control by tuning the activity of the corticospinal system. Critically, when doing so, we point out important caveats in the field that arise from the fact that these circuits, and their impact on the corticospinal system, have not been considered equivalently for action selection, withholding, and cancellation. This has led to the misleading view that some circuits or regions are specialized in specific control processes and that they produce particular modulatory changes in corticospinal excitability (e.g., generic vs. specific modulation of corticospinal excitability). Hence, we point to the need for more transversal research approaches in the field of action control.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Nerve Net/physiology , Pyramidal Tracts/physiology , Humans , Spinal Cord/physiology , Transcranial Magnetic Stimulation/methods
17.
J Neurophysiol ; 122(4): 1566-1577, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31411932

ABSTRACT

Decisions about actions typically involve a period of deliberation that ends with the commitment to a choice and the motor processes overtly expressing that choice. Previous studies have shown that neural activity in sensorimotor areas, including the primary motor cortex (M1), correlates with deliberation features during action selection. However, the causal contribution of these areas to the decision process remains unclear. Here, we investigated whether M1 determines choice commitment or whether it simply reflects decision signals coming from upstream structures and instead mainly contributes to the motor processes that follow commitment. To do so, we tested the impact of a disruption of M1 activity, induced by continuous theta burst stimulation (cTBS), on the behavior of human subjects in 1) a simple reaction time (SRT) task allowing us to estimate the duration of the motor processes and 2) a modified version of the tokens task (Cisek P, Puskas GA, El-Murr S. J Neurosci 29: 11560-11571, 2009), which allowed us to estimate subjects' time of commitment as well as accuracy criterion. The efficiency of cTBS was attested by a reduction in motor evoked potential amplitudes following M1 disruption compared with those following a sham stimulation. Furthermore, M1 cTBS lengthened SRTs, indicating that motor processes were perturbed by the intervention. Importantly, all of the behavioral results in the tokens task were similar following M1 disruption and sham stimulation, suggesting that the contribution of M1 to the deliberation process is potentially negligible. Taken together, these findings favor the view that M1 contribution is downstream of the decision process.NEW & NOTEWORTHY Decisions between actions are ubiquitous in the animal realm. Deliberation during action choices entails changes in the activity of the sensorimotor areas controlling those actions, but the causal role of these areas is still often debated. With the use of continuous theta burst stimulation, we show that disrupting the primary motor cortex (M1) delays the motor processes that follow instructed commitment but does not alter volitional deliberation, suggesting that M1 contribution may be downstream of the decision process.


Subject(s)
Choice Behavior , Motor Cortex/physiology , Adult , Female , Humans , Male , Reaction Time , Reward , Theta Rhythm
19.
Neuroimage ; 186: 424-436, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30458303

ABSTRACT

Motor decisions entails a buildup of choice-selective activity in the motor cortex. The rate of this buildup crucially depends on the amount of evidence favoring the selection of each action choice in the visual environment. Though numerous studies have characterized how sensory evidence drives motor activity when processed consciously, very little is known about the neural mechanisms that underlie the integration of implicit sources of information. Here, we used electroencephalography to investigate the impact of implicit visual cues on response-locked potentials and oscillatory activity in the motor cortex during decision-making. Subjects were required to select between left and right index finger responses according to the motion direction of a cloud of dots presented in one of three possible colors. Unbeknown to the participants, the color cue could bring evidence either in favor of or against the selection of the correct response. Implicit color cues tuned choice-selective oscillatory activity in the low beta range (16-25 Hz), boosting the buildup of contralateral activity when evidence favored the selection of the correct action, while weakening it when evidence biased against the correct response. This modulation of oscillatory activity influenced the speed at which the correct action was eventually chosen. Implicit cues also altered oscillatory activity in a non-selective way in the low frequency oscillation (1-7 Hz) and high beta ranges (25-35 Hz), impacting both contralateral and ipsilateral activity. The current findings yield a critical extension of prior observations by indicating that the integration of both explicit and implicit sources of evidence tunes oscillatory motor activity during decision-making.


Subject(s)
Cues , Decision Making/physiology , Motor Cortex/physiology , Pattern Recognition, Visual/physiology , Psychomotor Performance , Adult , Brain Waves , Electroencephalography , Evoked Potentials , Female , Humans , Male , Motor Activity , Photic Stimulation , Young Adult
20.
J Neurosci ; 38(44): 9486-9504, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30201772

ABSTRACT

Many behaviors require choosing between conflicting options competing against each other in visuomotor areas. Such choices can benefit from top-down control processes engaging frontal areas in advance of conflict when it is anticipated. Yet, very little is known about how this proactive control system shapes the visuomotor competition. Here, we used electroencephalography in human subjects (male and female) to identify the visual and motor correlates of conflict expectation in a version of the Eriksen Flanker task that required left or right responses according to the direction of a central target arrow surrounded by congruent or incongruent (conflicting) flankers. Visual conflict was either highly expected (it occurred in 80% of trials; mostly incongruent blocks) or very unlikely (20% of trials; mostly congruent blocks). We evaluated selective attention in the visual cortex by recording target- and flanker-related steady-state visual-evoked potentials (SSVEPs) and probed action selection by measuring response-locked potentials (RLPs) in the motor cortex. Conflict expectation enhanced accuracy in incongruent trials, but this improvement occurred at the cost of speed in congruent trials. Intriguingly, this behavioral adjustment occurred while visuomotor activity was less finely tuned: target-related SSVEPs were smaller while flanker-related SSVEPs were higher in mostly incongruent blocks than in mostly congruent blocks, and incongruent trials were associated with larger RLPs in the ipsilateral (nonselected) motor cortex. Hence, our data suggest that conflict expectation recruits control processes that augment the tolerance for inappropriate visuomotor activations (rather than processes that downregulate their amplitude), allowing for overflow activity to occur without having it turn into the selection of an incorrect response.SIGNIFICANCE STATEMENT Motor choices made in front of discordant visual information are more accurate when conflict can be anticipated, probably due to the engagement of top-down control from frontal areas. How this control system modulates activity within visual and motor areas is unknown. Here, we show that, when control processes are recruited in anticipation of conflict, as evidenced by higher midfrontal theta activity, visuomotor activity is less finely tuned: visual processing of the goal-relevant location was reduced and the motor cortex displayed more inappropriate activations, compared with when conflict was unlikely. We argue that conflict expectation is associated with an expansion of the distance-to-selection threshold, improving accuracy while the need for online control of visuomotor activity is reduced.


Subject(s)
Conflict, Psychological , Decision Making/physiology , Motivation/physiology , Motor Cortex/physiology , Psychomotor Performance/physiology , Visual Cortex/physiology , Electroencephalography/methods , Evoked Potentials, Visual/physiology , Female , Humans , Male , Photic Stimulation/methods , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...