Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Biol Sci ; 285(1888)2018 10 10.
Article in English | MEDLINE | ID: mdl-30305435

ABSTRACT

Anthropogenic noise imposes novel selection pressures, especially on species that communicate acoustically. Many animals-including insects, frogs, whales and birds-produce sounds at higher frequencies in areas with low-frequency noise pollution. Although there is support for animals changing their vocalizations in real time in response to noise (i.e. immediate flexibility), other evolutionary mechanisms for animals that learn their vocalizations remain largely unexplored. We hypothesize that cultural selection for signal structures less masked by noise is a mechanism of acoustic adaptation to anthropogenic noise. We test this hypothesis by presenting nestling white-crowned sparrows (Zonotrichia leucophyrs) with less-masked (higher-frequency) and more-masked (lower-frequency) tutor songs either during playback of anthropogenic noise (noise-tutored treatment) or at a different time from noise playback (control treatment). As predicted, we find that noise-tutored males learn less-masked songs significantly more often, whereas control males show no copying preference, providing strong experimental support for cultural selection in response to anthropogenic noise. Further, noise-tutored males reproduce songs at higher frequencies than their tutor, indicating a distinct mechanism to increase signal transmission in a noisy environment. Notably, noise-tutored males achieve lower performance songs than their tutors, suggesting potential costs in a sexual selection framework.


Subject(s)
Noise , Songbirds/physiology , Vocalization, Animal , Acoustics , Adaptation, Physiological , Animals , Cities , Male , San Francisco , Sparrows/physiology
2.
Ecol Evol ; 8(3): 1890-1905, 2018 02.
Article in English | MEDLINE | ID: mdl-29435262

ABSTRACT

Environmental differences influence the evolutionary divergence of mating signals through selection acting either directly on signal transmission ("sensory drive") or because morphological adaptation to different foraging niches causes divergence in "magic traits" associated with signal production, thus indirectly driving signal evolution. Sensory drive and magic traits both contribute to variation in signal structure, yet we have limited understanding of the relative role of these direct and indirect processes during signal evolution. Using phylogenetic analyses across 276 species of ovenbirds (Aves: Furnariidae), we compared the extent to which song evolution was related to the direct influence of habitat characteristics and the indirect effect of body size and beak size, two potential magic traits in birds. We find that indirect ecological selection, via diversification in putative magic traits, explains variation in temporal, spectral, and performance features of song. Body size influences song frequency, whereas beak size limits temporal and performance components of song. In comparison, direct ecological selection has weaker and more limited effects on song structure. Our results illustrate the importance of considering multiple deterministic processes in the evolution of mating signals.

SELECTION OF CITATIONS
SEARCH DETAIL