Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 14(1): 33, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188311

ABSTRACT

Lentinus tigrinus SSB_W2, isolated from Mahabaleshwar in the Western Ghats of Maharashtra, India, was employed to enhance laccase production in solid-state fermentation (SSF). The spectral analysis indicated that the laccase produced by L. tigrinus is a typical yellow laccase, exhibiting no absorption at 600 nm. Notably, this yellow laccase demonstrated exceptional catalytic activity, as confirmed by electrochemical analysis. Four agricultural processing wastes were evaluated as substrates for SSF, and the results showed that L. tigrinus effectively utilized wheat bran. Initial testing by one-factor-at-a-time method showed 3.79-fold increase in yellow laccase production, which subsequently increased to 6.51-fold after Plackett-Burman design. Moreover, employing response surface methodology resulted in 11.87-fold increase (108,472 IU gds-1) in laccase production. The utilization of yellow laccase for the biotransformation of various textile dyes was investigated, and it exhibited the highest degradation efficiency toward Reactive blue 4, a recalcitrant anthraquinone dye, with a rate of 18.36 mg L-1 h-1, for an initial concentration of 1000 mg L-1. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03881-9.

2.
J Environ Manage ; 299: 113564, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34461462

ABSTRACT

Manganese oxide is an interesting material for electrochemical properties. It is well known that Mn3O4 (spinel) can be electrochemically converted to MnO2 (birnessite) via the electrochemical route during cyclic voltammetry (CV) cycling in aqueous Na2SO4 solution. Herein, the novel way is represented for the growth of highly adherent and compact Mn3O4 thin films by using successive ionic layer adsorption and reaction (SILAR) method. As grown Mn3O4 thin films are converted into MnO2 after chemical treatment by hydrochloric acid (HCl) via a disproportionate reaction. Mn3O4 thin films are converted into MnO2 by both chemical and electrochemical paths. During chemical conversion, at acidic pH, the crystal water insertion (H3O+) in Mn3O4 crystal provides the necessary driving force to transform it into MnO2 crystal. During electrochemical transformation, the specific capacitance was found to increase from 72 (1st CV cycle) to 393 F/g (1600th CV cycle). On the other hand, the specific capacitance was increased from 72 to 258 F/g through chemical transformation. Electrochemical and chemical conversion leads to ~5.5 and ~3.5 fold, respectively, improved supercapacitive performance than pristine Mn3O4 thin films. Both chemical and electrochemical conversion routes are extremely useful to recycle battery waste for supercapacitor applications.


Subject(s)
Manganese Compounds , Oxides , Adsorption , Electric Capacitance , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...