Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Best Pract Res Clin Haematol ; 36(4): 101521, 2023 12.
Article in English | MEDLINE | ID: mdl-38092478

ABSTRACT

Myeloid malignancies such as myelodysplastic syndrome (MDS) & acute myeloid leukemia (AML) are clonal diseases that emerge and progress due to the expansion of disease-initiating aberrant hematopoietic stem cells, that are not eliminated by conventional cytotoxic therapies. Hypomethylating agents(HMA), azacytidine and decitabine are the first line agents for treatment of MDS and a combination with BCL-2 inhibitor, venetoclax, is approved for AML induction in patients above 75 years and is also actively being investigated for use in high risk MDS. Resistance to these drugs has become a significant clinical challenge in treatment of myeloid malignancies. In this review, we discuss molecular mechanisms underlying the development of resistance to HMA and venetoclax. Insights into these mechanisms can help identify potential biomarkers for resistance prediction, aid in the development of combination therapies and strategies to prevent resistance and advance the field of cancer therapeutics.


Subject(s)
Antineoplastic Agents , GATA2 Deficiency , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Azacitidine/therapeutic use , Proto-Oncogene Proteins c-bcl-2/genetics
2.
Curr Hematol Malig Rep ; 18(3): 56-67, 2023 06.
Article in English | MEDLINE | ID: mdl-37052811

ABSTRACT

PURPOSE OF REVIEW: To discuss novel targeted therapies under investigation for treatment of myelodysplastic neoplasms (MDS). RECENT FINDINGS: Over the last few years, results of phase 3 trials assessing novel therapies for high-risk MDS have been largely disappointing. Pevonedistat (NEDD-8 inhibitor) and APR-246 (TP53 reactivator) both did not meet trial endpoints. However, early phase trials of BCL-2, TIM3, and CD47 inhibitors have shown exciting data and are currently under phase 3 investigation. Moreover, combination of hypomethylating agents (HMA) with novel therapies targeting the mutational (IDH, FLT3, spliceosome complex) or immune (PD-1/PDL-1, TIM-3, IRAK-4) pathways are being investigated in early phase clinical trials and have shown adequate safety and promising efficacy. Myelodysplastic neoplasms (MDS) are a group of hematopoietic neoplasms defined by cytopenias and morphological dysplasia. They are characterized by clonal proliferation of aberrant hematopoietic stem cells caused by recurrent genetic abnormalities. This leads to ineffective erythropoiesis, peripheral blood cytopenias, abnormal cell maturation, and a high risk of transformation into acute myeloid leukemia (AML). Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, it is not a suitable option for majority patients due to their age, comorbidities, and the high rate of treatment-related complications. HMAs remain the only FDA-approved treatment option for high-risk MDS. Due to intolerance, primary, and secondary resistance to HMA, there is a large unmet need to develop new safe and effective therapies for patients with MDS. In this review, we focus on the current management strategies and novel therapies in development for treatment of high-risk MDS.


Subject(s)
Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/therapy
3.
Indian J Hematol Blood Transfus ; 37(1): 157-161, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33707850

ABSTRACT

Sitosterolemia is a rare autosomal recessively inherited lipid metabolic disorder that is characterized by hyper absorption of plant sterols from the intestinal mucosa leading to toxic levels in the blood. Four patients of age ranging from 11 to 29 years presented to the outpatient department with clinical features of hemolytic anemia. There were no features of hypercholesterolemia in any of the patients. Peripheral smear examination of all four patients showed stomatocytes and macrothrombocytopenia. Qualitative testing for plant sterols was performed in one case. Next generation sequencing revealed a compound heterozygous mutation in ABCG5 gene (c.1222C>T and c.1255C>T) in one case and homozygous mutations in ABCG5 gene (c.727C>T), (c.332G>A (p.G111E)), (c.1222C>T) in the other three cases. Ezetimibe (10 mg/day) was administered in one case, with complete resolution of symptoms. All patients were advised a low plant sterol diet and regular monitoring of hemoglobin and lipid profile. Our cases highlight a rare but important cause of hemolytic anemia that can be suspected from careful peripheral blood examination but only conclusively established by molecular genetic diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...