Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 16(2): 238-250, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228803

ABSTRACT

FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Hormones
2.
Elife ; 122023 01 19.
Article in English | MEDLINE | ID: mdl-36656749

ABSTRACT

Quantitative differences in signal transduction are to date an understudied feature of tumour heterogeneity. The MAPK Erk pathway, which is activated in a large proportion of human tumours, is a prototypic example of distinct cell fates being driven by signal intensity. We have used primary hepatocyte precursors transformed with different dosages of an oncogenic form of Ras to model subclonal variations in MAPK signalling. Orthotopic allografts of Ras-transformed cells in immunocompromised mice gave rise to fast-growing aggressive tumours, both at the primary location and in the peritoneal cavity. Fluorescent labelling of cells expressing different oncogene levels, and consequently varying levels of MAPK Erk activation, highlighted the selection processes operating at the two sites of tumour growth. Indeed, significantly higher Ras expression was observed in primary as compared to secondary, metastatic sites, despite the apparent evolutionary trade-off of increased apoptotic death in the liver that correlated with high Ras dosage. Analysis of the immune tumour microenvironment at the two locations suggests that fast peritoneal tumour growth in the immunocompromised setting is abrogated in immunocompetent animals due to efficient antigen presentation by peritoneal dendritic cells. Furthermore, our data indicate that, in contrast to the metastatic-like outgrowth, strong MAPK signalling is required in the primary liver tumours to resist elimination by NK (natural killer) cells. Overall, this study describes a quantitative aspect of tumour heterogeneity and points to a potential vulnerability of a subtype of hepatocellular carcinoma as a function of MAPK Erk signalling intensity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Killer Cells, Natural , Liver Neoplasms/genetics , MAP Kinase Signaling System , Signal Transduction , Tumor Microenvironment , ras Proteins/metabolism
3.
Mol Metab ; 60: 101483, 2022 06.
Article in English | MEDLINE | ID: mdl-35367668

ABSTRACT

Fibroblast growth factor 19 (FGF19) is a hormone with pleiotropic metabolic functions, leading to ongoing development of analogues for treatment of metabolic disorders. On the other hand, FGF19 is overexpressed in a sub-group of hepatocellular carcinoma (HCC) patients and has oncogenic properties. It is therefore crucial to precisely define FGF19 effects, notably in the context of chronic exposure to elevated concentrations of the hormone. Here, we used hydrodynamic gene transfer to generate a transgenic mouse model with long-term FGF19 hepatic overexpression. We describe a novel effect of FGF19, namely the stimulation of water intake. This phenotype, lasting at least over a 6-month period, depends on signaling in the central nervous system and is independent of FGF21, although it mimics some of its features. We further show that HCC patients with high levels of circulating FGF19 have a reduced natremia, indicating dipsogenic features. The present study provides evidence of a new activity of FGF19, which could be clinically relevant in the context of FGF19 overexpressing cancers and in the course of treatment of metabolic disorders by FGF19 analogues.


Subject(s)
Carcinoma, Hepatocellular , Fibroblast Growth Factors/metabolism , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/metabolism , Drinking , Fibroblast Growth Factors/genetics , Hormones , Humans , Liver Neoplasms/metabolism , Mice , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism
4.
Pathogens ; 11(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35055994

ABSTRACT

Chronic hepatitis C carries a high risk of development of hepatocellular carcinoma (HCC), triggered by both direct and indirect effects of the virus. We examined cell-autonomous alterations in gene expression profiles associated with hepatitis C viral presence. Highly sensitive single molecule fluorescent in situ hybridization applied to frozen tissue sections of a hepatitis C patient allowed the delineation of clusters of infected hepatocytes. Laser microdissection followed by RNAseq analysis of hepatitis C virus (HCV)-positive and -negative regions from the tumoral and non-tumoral tissues from the same patient revealed HCV-related deregulation of expression of genes in the tumor and in the non-tumoral tissue. However, there was little overlap between both gene sets. Our interest in alterations that increase the probability of tumorigenesis prompted the examination of genes whose expression was increased by the virus in the non-transformed cells and whose level remained high in the tumor. This strategy led to the identification of a novel HCV target gene: GOLT1B, which encodes a protein involved in ER-Golgi trafficking. We further show that GOLT1B expression is induced during the unfolded protein response, that its presence is essential for efficient viral replication, and that its expression is correlated with poor outcome in HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...