Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927500

ABSTRACT

Arrhythmic risk stratification in patients with Lamin A/C gene (LMNA)-related cardiomyopathy influences clinical decisions. An implantable cardioverter defibrillator (ICD) should be considered in patients with an estimated 5-year risk of malignant ventricular arrhythmia (MVA) of ≥10%. The risk prediction score for MVA includes non-missense LMNA mutations, despite their role as an established risk factor for sudden cardiac death (SCD) has been questioned in several studies. The purpose of this study is to investigate cardiac features and find gene-phenotype correlations that would contribute to the evidence on the prognostic implications of non-missense vs. missense mutations in a cohort of LMNA mutant patients. An observational, prospective study was conducted in which 54 patients positive for a Lamin A/C mutation were enrolled, and 20 probands (37%) were included. The median age at first clinical manifestation was 41 (IQR 19) years. The median follow-up was 8 years (IQR 8). The type of LMNA gene mutation was distributed as follows: missense in 26 patients (48%), non-frameshift insertions in 16 (30%), frameshift deletions in 5 (9%), and nonsense in 7 (13%). Among the missense mutation carriers, two (8%) died and four (15%) were admitted onto the heart transplant list or underwent transplantation, with a major adverse cardiovascular event (MACE) rate of 35%. No statistically significant differences in MACE prevalence were identified according to the missense and non-missense mutation groups (p value = 0.847). Our data shift the spotlight on this considerable topic and could suggest that some missense mutations may deserve attention regarding SCD risk stratification in real-world clinical settings.

2.
Biomed Pharmacother ; 176: 116877, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850654

ABSTRACT

Multiple myeloma (MM) progression is closely dependent on cells in the bone marrow (BM) microenvironment, including fibroblasts (FBs) and immune cells. In their BM niche, MM cells adhere to FBs sustaining immune evasion, drug resistance and the undetectable endurance of tumor cells known as minimal residual disease (MRD). Here, we describe the novel bi-specific designed ankyrin repeat protein (DARPin) α-FAPx4-1BB (MP0310) with FAP-dependent 4-1BB agonistic activity. The α-FAPx4-1BB DARPin simultaneously binds to FAP and 4-1BB overexpressed by activated FBs and immune cells, respectively. Although flow cytometry analysis showed that T and NK cells from MM patients were not activated and did not express 4-1BB, stimulation with daratumumab or elotuzumab, monoclonal antibodies (mAbs) currently used for the treatment of MM, significantly upregulated 4-1BB both in vitro and in MM patients following mAb-based therapy. The mAb-induced 4-1BB overexpression allowed the engagement of α-FAPx4-1BB that acted as a bridge between FAP+FBs and 4-1BB+NK cells. Therefore, α-FAPx4-1BB enhanced both the adhesion of daratumumab-treated NK cells on FBs as well as their activation by improving release of CD107a and perforin, hence MM cell killing via antibody-mediated cell cytotoxicity (ADCC). Interestingly, α-FAPx4-1BB significantly potentiated daratumumab-mediated ADCC in the presence of FBs, suggesting that it may overcome the BM FBs' immunosuppressive effect. Overall, we speculate that treatment with α-FAPx4-1BB may represent a valuable strategy to improve mAb-induced NK cell activity fostering MRD negativity in MM patients through the eradication of latent MRD cells.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Killer Cells, Natural , Multiple Myeloma , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Membrane Proteins/metabolism , Membrane Proteins/agonists , Endopeptidases
3.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693246

ABSTRACT

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

4.
Arch Cardiovasc Dis ; 117(6-7): 450-456, 2024.
Article in English | MEDLINE | ID: mdl-38677940

ABSTRACT

In France, mexiletine - a class I antiarrhythmic drug - can be prescribed for the symptomatic treatment of myotonia of the skeletal muscles in adult patients with myotonic dystrophy under a compassionate use programme. Mexiletine is used according to its summary of product characteristics, which describes its use for myotonia treatment in adult patients with non-dystrophic myotonia, a different neuromuscular condition without cardiac involvement. A cardiac assessment is required prior to initiation and throughout treatment due to potential proarrhythmic effects. The presence of conduction system disease, the most common cardiac manifestation of myotonic dystrophy, mandates repeated cardiac evaluations in patients with this condition, and becomes even more important when they are given mexiletine. A group of experts, including three neurologists and five cardiologists from French neuromuscular reference centres, were involved in a task force to develop a treatment algorithm to guide mexiletine use in myotonic dystrophy. The recommendations are based on data from a literature review of the safety of mexiletine-treated patients with myotonic dystrophy, the compassionate use protocol for mexiletine and the personal clinical experience of the experts. The main conclusion of the expert group is that, although existing safety data in mexiletine-treated patients with myotonic dystrophy are reassuring, cardiac assessments should be reinforced in such patients compared with mexiletine-treated patients with non-dystrophic myotonia. This expert opinion to guide mexiletine treatment in patients with myotonic dystrophy should help to reduce the risk of severe adverse events and facilitate interactions between specialists involved in the routine care of patients with myotonic dystrophy.


Subject(s)
Mexiletine , Myotonic Dystrophy , Adult , Humans , Algorithms , Anti-Arrhythmia Agents/therapeutic use , Anti-Arrhythmia Agents/adverse effects , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/chemically induced , Clinical Decision-Making , Compassionate Use Trials , Consensus , France , Mexiletine/therapeutic use , Mexiletine/adverse effects , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/physiopathology , Risk Assessment , Risk Factors , Treatment Outcome , Voltage-Gated Sodium Channel Blockers/therapeutic use , Voltage-Gated Sodium Channel Blockers/adverse effects
5.
J Neuromuscul Dis ; 11(3): 725-734, 2024.
Article in English | MEDLINE | ID: mdl-38427496

ABSTRACT

Background: The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods: Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results: A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions: The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.


Subject(s)
Myotonia , NAV1.4 Voltage-Gated Sodium Channel , Pedigree , Point Mutation , Adult , Female , Humans , Middle Aged , Electromyography , Italy , Myotonia/genetics , Myotonia Congenita/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics
6.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341423

ABSTRACT

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL