Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863085

ABSTRACT

Optimizing electrosynthetic reactions requires fine tuning of a vast chemical space, including charge transfer at electrocatalyst/electrode surfaces, engineering of mass transport limitations, and complex interactions of reactants and products with their environment. Hybrid electrolytes, in which supporting salt ions and substrates are dissolved in a binary mixture of organic solvent and water, represent a new piece of this complex puzzle as they offer a unique opportunity to harness water as the oxygen or proton source in electrosynthesis. In this work, we demonstrate that modulating water-organic solvent interactions drastically impacts the solvation properties of hybrid electrolytes. Combining various spectroscopies with synchrotron small-angle X-ray scattering (SAXS) and force field-based molecular dynamics (MD) simulations, we show that the size and composition of aqueous domains forming in hybrid electrolytes can be controlled. We demonstrate that water is more reactive for the hydrogen evolution reaction (HER) in aqueous domains than when strongly interacting with solvent molecules, which originates from a change in reaction kinetics rather than a thermodynamic effect. We exemplify novel opportunities arising from this new knowledge for optimizing electrosynthetic reactions in hybrid electrolytes. For reactions proceeding first via the activation of water, fine tuning of aqueous domains impacts the kinetics and potentially the selectivity of the reaction. Instead, for organic substrates reacting prior to water, aqueous domains have no impact on the reaction kinetics, while selectivity may be affected. We believe that such a fine comprehension of solvation properties of hybrid electrolytes can be transposed to numerous electrosynthetic reactions.

2.
Dalton Trans ; 53(19): 8105-8111, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695771

ABSTRACT

Li(Ni0.80Co0.15Al0.05)O2 is a lithium-ion battery cathode, commercially available for more than twenty years, which is associated with high energy capacity and high energy density, with moderate power. Atomic layer fluorination (ALF) of Li(Ni0.80Co0.15Al0.05)O2 with XeF2 is performed to improve its cyclability. The ALF method aims at forming an efficient protecting fluorinated layer at the surface of the material, with a low fluorine content. Surface fluorinated Li(Ni0.80Co0.15Al0.05)O2 is characterized by X-ray diffraction, electron microscopy, 19F nuclear magnetic resonance, X-ray photoelectron spectroscopy, and galvanostatic measurements, and a fluorine content as low as 1.4 wt% is found. The presence of fluorine atoms improves the electrochemical performances of Li(Ni0.80Co0.15Al0.05)O2: cyclability, polarization and rate capability are improved. Operando infrared spectroscopy and post-mortem gas chromatography provide some insights into the origins of these improvements.

3.
J Am Chem Soc ; 146(3): 1992-2004, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38221743

ABSTRACT

Solid polymer electrolytes (SPEs) have emerged as promising candidates for sodium-based batteries due to their cost-effectiveness and excellent flexibility. However, achieving high ionic conductivity and desirable mechanical properties in SPEs remains a challenge. In this study, we investigated an AB diblock copolymer, PS-PEA(BuImTFSI), as a potential SPE for sodium batteries. We explored binary and ternary electrolyte systems by combining the polymer with salt and [C3mpyr][FSI] ionic liquid (IL) and analyzed their thermal and electrochemical properties. Differential scanning calorimetry revealed phase separation in the polymer systems. The addition of salt exhibited a plasticizing effect localized to the polyionic liquid (PIL) phase, resulting in an increased ionic conductivity in the binary electrolytes. Introducing the IL further enhanced the plasticizing effect, elevating the ionic conductivity in the ternary system. Spectroscopic analysis, for the first time, revealed that the incorporation of NaFSI and IL influences the conformation of TFSI- and weakens the interaction between TFSI- and the polymer. This establishes correlations between anions and Na+, ultimately enhancing the diffusivity of Na ions. The electrochemical properties of an optimized SPE in Na/Na symmetrical cells were investigated, showcasing stable Na plating/stripping at high current densities up to 0.7 mA cm-2, maintaining its integrity at 70 °C. Furthermore, we evaluated the performance of a Na|NaFePO4 cell cycled at different rates (C/10 and C/5) and temperatures (50 and 70 °C), revealing remarkable high-capacity retention and Coulombic efficiency. This study highlights the potential of solvent-free diblock copolymer electrolytes for high-performance sodium-based energy storage systems, contributing to advanced electrolyte materials.

4.
ACS Appl Mater Interfaces ; 15(50): 58794-58805, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38055784

ABSTRACT

Hybrid solid electrolytes (HSEs) aim to combine the superior ionic conductivity of inorganic fillers with the scalable process of polymer electrolytes in a unique material for solid-state batteries. Pursuing the goal of optimizing the key metrics (σion ≥ 10-4 S·cm-1 at 25 °C and self-standing property), we successfully developed an HSE based on a modified poly(ethylene oxide):LiTFSI organic matrix, which binds together a high loading (75 wt %) of Li6PS5Cl particles, following a solvent-free route. A rational study of available formulation parameters has enabled us to understand the role of each component in conductivity, mixing, and mechanical cohesion. Especially, the type of activation mechanism (Arrhenius or Vogel-Fulcher-Tammann (VFT)) and its associated energy are proposed as a new metric to unravel the ionic pathway inside the HSE. We showed that a polymer-in-ceramic approach is mandatory to obtain enhanced conduction through the HSE ceramic network, as well as superior mechanical properties, revealed by the tensile test. Probing the compatibility of phases, using electrochemical impedance spectroscopy (EIS) alongside 7Li nuclear magnetic resonance (NMR), reveals the formation of an interphase, the quantity and resistivity of which grow with time and temperature. Finally, electrochemical performances are evaluated by assembling an HSE-based battery, which displays comparable stability as pure ceramic ones but still suffers from higher polarization and thus lower capacity. Altogether, we hope these findings provide valuable knowledge to develop a successful HSE, by placing the optimization of the right metrics at the core of the formulation.

5.
J Magn Reson ; 354: 107527, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37603989

ABSTRACT

Lithium-ion batteries are at the core of the democratisation of electric transportation and portative electronic devices. However, fast and/or low temperature charge induce performance loss, mainly through lithium plating, a degrading mechanism. In this report, 7Li operando Nuclear Magnetic Resonance spectroscopy is used to detect the onset of metastable lithium deposits in an NMC622/graphite cell at 0 °C and fast charge. An operando setup, compatible with low temperatures, was developed with special attention to the pressure applied on the electrodes/separator stack and noise reduction to enable early detection and good time-resolution. Direct detection of metallic lithium enables drawing correlations between lithium plating and electrochemical data.

6.
Proc Natl Acad Sci U S A ; 120(17): e2220662120, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37068232

ABSTRACT

Unlike the interface between two immiscible electrolyte solutions (ITIES) formed between water and polar solvents, molecular understanding of the liquid-liquid interface formed for aqueous biphasic systems (ABSs) is relatively limited and mostly relies on surface tension measurements and thermodynamic models. Here, high-resolution Raman imaging is used to provide spatial and chemical resolution of the interface of lithium chloride - lithium bis(trifluoromethanesulfonyl)imide - water (LiCl-LiTFSI-water) and HCl-LiTFSI-water, prototypical salt-salt ABSs found in a range of electrochemical applications. The concentration profiles of both TFSI anions and water are found to be sigmoidal thus not showing any signs of a positive adsorption for both salts and solvent. More striking, however, is the length at which the concentration profiles extend, ranging from 11 to 2 µm with increasing concentrations, compared to a few nanometers for ITIES. We thus reveal that unlike ITIES, salt-salt ABSs do not have a molecularly sharp interface but rather form an interphase with a gradual change of environment from one phase to the other. This knowledge represents a major stepping-stone in the understanding of aqueous interfaces, key for mastering ion or electron transfer dynamics in a wide range of biological and technological settings including novel battery technologies such as membraneless redox flow and dual-ion batteries.

7.
J Am Chem Soc ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36779668

ABSTRACT

The surface functionalization of 2D transition metal carbides or nitrides, so-called MXenes, is one of the fundamental levers allowing to deeply modify their physicochemical properties. Beyond new approaches to control this pivotal parameter, the ability to unambiguously assess their surface chemistry is thus key to expand the application fields of this large class of 2D materials. Using a combination of experiments and state of the art density functional theory calculations, we show that the NMR signal of the carbon─the element common to all MXene carbides and corresponding MAX phase precursors─is extremely sensitive to the MXene functionalization, although carbon atoms are not directly bonded to the surface groups. The simulations include the orbital part to the NMR shielding and the contribution from the Knight shift, which is crucial to achieve good correlation with the experimental data, as demonstrated on a set of reference MXene precursors. Starting with the Ti3C2Tx MXene benchmark system, we confirm the high sensitivity of the 13C NMR shift to the exfoliation process. Developing a theoretical protocol to straightforwardly simulate different surface chemistries, we show that the 13C NMR shift variations can be quantitatively related to different surface compositions and number of surface chemistry variants induced by the different etching agents. In addition, we propose that the etching agent affects not only the nature of the surface groups but also their spatial distribution. The direct correlation between surface chemistry and 13C NMR shift is further confirmed on the V2CTx, Mo2CTx, and Nb2CTx MXenes.

8.
ACS Appl Mater Interfaces ; 14(39): 44405-44418, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36150165

ABSTRACT

The development of superconcentrated or water-in-salt electrolytes (WISEs) has paved a new way toward realizing environmentally friendly, nonflammable batteries and supercapacitors based on aqueous electrolytes. The development of new electrolytes, such as WISEs, needs to be accompanied by further studies of the charging mechanism. This is essential to guide the choice of the electrode/electrolyte pairs for optimizing the performance of WISE-based supercapacitors. Therefore, to optimize the performance of carbon/carbon supercapacitors when using new, superconcentrated electrolytes, we present a detailed investigation of the carbon/electrolyte interface by combining electrochemical measurements with Raman and NMR spectroscopy and mass spectrometry. In particular, NMR provides crucial information about the local environment of electrolyte ions inside the carbon pores of the electrode. The results show that the structure of the electrolyte strongly depends on the concentration of the electrolyte and affects the mechanism of charge storage at the positive and negative electrodes.

9.
Nat Mater ; 20(11): 1545-1550, 2021 11.
Article in English | MEDLINE | ID: mdl-34326505

ABSTRACT

Insertion compounds provide the fundamental basis of today's commercialized Li-ion batteries. Throughout history, intense research has focused on the design of stellar electrodes mainly relying on layered oxides or sulfides, and leaving aside the corresponding halides because of solubility issues. This is no longer true. In this work, we show the feasibility of reversibly intercalating Li+ electrochemically into VX3 compounds (X = Cl, Br, I) via the use of superconcentrated electrolytes (5 M LiFSI in dimethyl carbonate), hence opening access to a family of LixVX3 phases. Moreover, through an electrolyte engineering approach, we unambiguously prove that the positive attribute of superconcentrated electrolytes against the solubility of inorganic compounds is rooted in a thermodynamic rather than a kinetic effect. The mechanism and corresponding impact of our findings enrich the fundamental understanding of superconcentrated electrolytes and constitute a crucial step in the design of novel insertion compounds with tunable properties for a wide range of applications including Li-ion batteries and beyond.


Subject(s)
Electrolytes , Lithium , Electric Power Supplies , Electrochemistry , Electrodes , Electrolytes/chemistry , Lithium/chemistry
10.
ACS Appl Mater Interfaces ; 13(13): 15159-15167, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33760585

ABSTRACT

This paper describes the simple, highly reproducible, and robust synthesis of a new solid organic/inorganic electrolyte based on the ionic liquid (IL) 1-butyl-3-(carboxyundecyl)imidazolium bis(trifluoromethylsulfonyl)imide tethered to zirconia nanoparticles (15-25 nm) by coordination and named ZrO2@IL. The IL monolayer formation, ensured by two-dimensional solid-state NMR, at the nanoparticles' surface considerably reduces both the IL's consumption and the IL amount at the ZrO2 surface compared to the IL-based hybrid electrolytes reported in the literature. After LiTFSI, used as a lithium source, content optimization (26 wt %), the hybrid exhibits unprecedented stable conductivity passing from 0.6 × 10-4 S.cm-1 to 0.15 × 10-4 S.cm-1, respectively, from 85 °C to room temperature (25 °C). Unlike silica which is commonly adopted for this type of hybrid material, zirconia makes it possible to produce more impact-resistant pellets that are easier to compact, thus being favorable for accurate conductivity studies and battery development by electrode/composite/solid electrolyte layer stacking. The ZrO2@IL/LiTFSI solid hybrid electrolyte's thermal stability (up to 300 °C) and performance make this electrolyte suitable for lithium conduction in all-solid-state batteries.

11.
Nat Mater ; 20(3): 353-361, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33432141

ABSTRACT

Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g-1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries.

12.
Magn Reson Chem ; 58(11): 1118-1129, 2020 11.
Article in English | MEDLINE | ID: mdl-32324938

ABSTRACT

Magic-angle-spinning (MAS) enhances sensitivity and resolution in solid-state nuclear magnetic resonance (NMR) measurements. MAS is obtained by aerodynamic levitation and drive of a rotor, which results in large centrifugal forces that may affect the physical state of soft materials, such as polymers, and subsequent solid-state NMR measurements. Here, we investigate the effects of MAS on the solid-state NMR measurements of a polymer electrolyte for lithium-ion battery applications, poly(ethylene oxide) (PEO) doped with the lithium salt LiTFSI. We show that MAS induces local chain ordering, which manifests itself as characteristic lineshapes with doublet-like splittings in subsequent solid-state 1 H, 7 Li, and 19 F static NMR spectra characterizing the PEO chains and solvated ions. MAS results in distributions of stresses and hence local chain orientations within the rotor, yielding distributions in the local magnetic susceptibility tensor that give rise to the observed NMR anisotropy and lineshapes. The effects of MAS were investigated on solid-state 7 Li and 19 F pulsed-field-gradient (PFG) diffusion and 7 Li longitudinal relaxation NMR measurements. Activation energies for ion diffusion were affected modestly by MAS. 7 Li longitudinal relaxation rates, which are sensitive to lithium-ion dynamics in the nanosecond regime, were essentially unchanged by MAS. We recommend that NMR researchers studying soft polymeric materials use only the spin rates necessary to achieve the desired enhancements in sensitivity and resolution, as well as acquire static NMR spectra after MAS experiments to reveal any signs of stress-induced local ordering.

13.
Nat Commun ; 11(1): 1378, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32170137

ABSTRACT

The production of hydrogen at a large scale by the environmentally-friendly electrolysis process is currently hampered by the slow kinetics of the oxygen evolution reaction (OER). We report a solid electrocatalyst α-Li2IrO3 which upon oxidation/delithiation chemically reacts with water to form a hydrated birnessite phase, the OER activity of which is five times greater than its non-reacted counterpart. This reaction enlists a bulk redox process during which hydrated potassium ions from the alkaline electrolyte are inserted into the structure while water is oxidized and oxygen evolved. This singular charge balance process for which the electrocatalyst is solid but the reaction is homogeneous in nature allows stabilizing the surface of the catalyst while ensuring stable OER performances, thus breaking the activity/stability tradeoff normally encountered for OER catalysts.

14.
ACS Nano ; 13(11): 12810-12815, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31618018

ABSTRACT

Nuclear magnetic resonance is one of the rare techniques able to probe selectively the ions inside the nanoporous network in supercapacitor devices. With a magnetic resonance imaging method able to detect all ions (adsorbed and nonadsorbed), we record one-dimensional concentration profiles of the active ions in supercapacitors with an electrode configuration close to that used in industry. Larger anionic concentration changes are probed upon charge and discharge in a carbide-derived carbon (CDC) with micropores smaller than 1 nm compared to a conventional nanoporous carbon (CC) with a larger distribution of pore sizes, up to 2 nm. They highlight the increased interaction of the anions with CDC and provide a better understanding of the enhanced capacitance in CDC-based supercapacitors.

15.
ACS Cent Sci ; 5(4): 640-643, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31041383

ABSTRACT

Aqueous biphasic systems (ABSs), in which two aqueous phases with different compositions coexist as separate liquids, were first reported more than a century ago with polymer solutions. Recent observations of ABS forming from concentrated mixtures of inorganic salts and ionic liquids raise the fundamental question of how "different" the components of such mixtures should be for a liquid-liquid phase separation to occur. Here we show that even two monovalent salts sharing a common cation (lithium) but with different anions, namely, LiCl and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), may result in the formation of ABSs over a wide range of compositions at room temperature. Using a combination of experimental techniques and molecular simulations, we analyze the coexistence diagram and the mechanism driving the phase separation, arising from the different anion sizes. The understanding and control of ABS may provide new avenues for aqueous-based battery systems.

16.
Nat Commun ; 10(1): 585, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718474

ABSTRACT

The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10-20% increase in the overall energy density.

17.
Front Chem ; 7: 4, 2019.
Article in English | MEDLINE | ID: mdl-30761289

ABSTRACT

The intermolecular interactions in a hybrid electrolyte based on various compositions of the ionic liquid N-methyl-N-propyl pyrrolidinium bis-fluorosulfonylimide (C3mpyrFSI), LiFSI salt and an ether-based additive, 1,2-dimethoxy ethane (DME), have been investigated using the HOESY (Heteronuclear Overhauser Effect SpectroscopY) NMR experiment. This NMR technique allows a quantification of the intermolecular interactions in ionic liquids (ILs) by measuring the cross-relaxation rate (σ) between different pairs of nuclei. Thereby, we compare the cross-relaxation rates between the cations, anions and DME in these hybrid electrolyte systems using 1H-7Li and 1H-19F HOESY experiments, and interpret the measured parameters in terms of ionic and molecular associations. The results give insights into the local coordination environment of the Li+ cations and their solvation by the FSI anions and DME.

18.
J Phys Chem Lett ; 9(24): 7072-7078, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30395468

ABSTRACT

The HOESY NMR experiment is commonly used to probe ion associations in ionic liquids and their mixtures. The parameter measured in this experiment is the heteronuclear cross-relaxation rate σ, which has dimensions of s-1. For intramolecular NOEs this scales as r-6 where r is the internuclear distance, but in the intermolecular case (as typically probed in studies of ionic liquids), theory predicts a more complex behavior including a distance dependence that is affected by the relative frequencies of the nuclei involved. Specifically, for nuclei with similar resonance frequencies such as 1H and 19F, it has been predicted that intermolecular NOEs will be sensitive to longer range distances than for nuclei with very different frequencies such as 1H and 7Li. In this contribution, we test this theory using a combination of quantitative HOESY analysis and molecular dynamics simulations carried out on two different ionic liquid electrolyte systems. In agreement with theoretical predictions, we find excellent correlations between the experimentally measured 1H-7Li NOEs and carbon-lithium distances below 4 Å, while longer distances (>6 Å) must be considered in order to obtain good correlations between 1H-19F NOEs and carbon-fluorine coordination numbers. This demonstrates the utility of HOESY NMR in understanding structure and interactions in ionic liquids while also illustrating that care must be taken in interpreting the measured cross-relaxation rates.

19.
J Phys Chem Lett ; 9(23): 6683-6688, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30398885

ABSTRACT

The water reduction that produces hydrogen is one key reaction for electrochemical energy storage. While it has been widely studied in traditional aqueous electrolytes for water splitting (electrolyzers), it also plays an important role for batteries. Indeed, the reduction of water at relatively high potential prevents the practical realization of high-voltage aqueous batteries, while water contamination is detrimental for organic battery electrolytes. Nevertheless, recent studies pointed toward the positive effect of traces of water for Li-air batteries as well as for the formation of solid-electrolyte interphase. Herein, we provide a detailed understanding of the role of the solvation on water reduction reaction in organic electrolytes. Using electrochemistry, classical molecular dynamics simulations, and nuclear magnetic resonance spectroscopy, we were able to demonstrate that (1) the hydrophilicity/hydrophobicity of the species inside the electrochemical double layer directly controls the reduction of water and (2) water-coordinating strong Lewis acids such as Li+ cation are more reactive than free water (or noncoordinating) water molecules.

20.
Phys Chem Chem Phys ; 20(19): 13357-13364, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29718051

ABSTRACT

The HOESY (Heteronuclear Overhauser Effect SpectroscopY) NMR experiment is commonly used to study interactions and structuring in ionic liquids (ILs) via the measurement of the cross relaxation rate σ between two spins. In the intermolecular case, σ is proportional to r-n, where r is the internuclear distance and n can vary between 1 and 6 depending on the frequency of the nuclei and their dynamics, thus σ can potentially provide detailed information on the liquid phase structure. However, in HOESY studies of ILs only relative values for σ are typically reported, making comparisons between different samples difficult. Herein we discuss the quantitative measurement of intermolecular cross relaxation rates based on the normalisation of HOESY signal intensities to the nuclear Boltzmann polarisation, demonstrated for 7Li-1H spin pairs in a lithium-containing pyrrolidinum-based ionic liquid electrolyte. We also use a simple model based on diffusing hard spheres for interpreting these quantities in terms of a distance of closest approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...