Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(3): 970-86, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24422550

ABSTRACT

11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) has been widely considered by the pharmaceutical industry as a target to treat metabolic syndrome in type II diabetics. We hypothesized that central nervous system (CNS) penetration might be required to see efficacy. Starting from a previously reported pyrimidine compound, we removed hydrogen-bond donors to yield 3, which had modest CNS penetration. More significant progress was achieved by changing the core to give 40, which combines good potency and CNS penetration. Compound 40 was dosed to diet-induced obese (DIO) mice and gave excellent target engagement in the liver and high free exposures of drug, both peripherally and in the CNS. However, no body weight reduction or effects on glucose or insulin were observed in this model. Similar data were obtained with a structurally diverse thiazole compound 51. This work casts doubt on the hypothesis that localized tissue modulation of 11ß-HSD1 activity alleviates metabolic syndrome.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Adamantane/analogs & derivatives , Adamantane/chemical synthesis , Brain/metabolism , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/chemical synthesis , Metabolic Syndrome/drug therapy , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , Adamantane/pharmacokinetics , Adamantane/pharmacology , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Crystallography, X-Ray , Cyclopropanes/chemical synthesis , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Dietary Fats/administration & dosage , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Insulin/blood , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Liver/drug effects , Liver/metabolism , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Mice , Mice, Inbred C57BL , Mice, Obese , Models, Molecular , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , Thiazoles/pharmacology
2.
Endocrinology ; 154(12): 4580-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24169553

ABSTRACT

The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a target for novel type 2 diabetes and obesity therapies based on the premise that lowering of tissue glucocorticoids will have positive effects on body weight, glycemic control, and insulin sensitivity. An 11ß-HSD1 inhibitor (compound C) inhibited liver 11ß-HSD1 by >90% but led to only small improvements in metabolic parameters in high-fat diet (HFD)-fed male C57BL/6J mice. A 4-fold higher concentration produced similar enzyme inhibition but, in addition, reduced body weight (17%), food intake (28%), and glucose (22%). We hypothesized that at the higher doses compound C might be accessing the brain. However, when we developed male brain-specific 11ß-HSD1 knockout mice and fed them the HFD, they had body weight and fat pad mass and glucose and insulin responses similar to those of HFD-fed Nestin-Cre controls. We then found that administration of compound C to male global 11ß-HSD1 knockout mice elicited improvements in metabolic parameters, suggesting "off-target" mechanisms. Based on the patent literature, we synthesized another 11ß-HSD1 inhibitor (MK-0916) from a different chemical series and showed that it too had similar off-target body weight and food intake effects at high doses. In summary, a significant component of the beneficial metabolic effects of these 11ß-HSD1 inhibitors occurs via 11ß-HSD1-independent pathways, and only limited efficacy is achievable from selective 11ß-HSD1 inhibition. These data challenge the concept that inhibition of 11ß-HSD1 is likely to produce a "step-change" treatment for diabetes and/or obesity.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Energy Metabolism/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Hypoglycemic Agents/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Triazoles/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Adipose Tissue/metabolism , Animals , Blood Glucose , Body Weight , Brain/metabolism , Dietary Fats/administration & dosage , Dietary Fats/adverse effects , Dose-Response Relationship, Drug , Female , Genotype , Glucose/metabolism , Hypoglycemic Agents/chemistry , Insulin/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Molecular Structure , Pyrazoles/chemistry , Pyrimidines/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Triazoles/chemistry
3.
Endocrinology ; 154(10): 3599-609, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23832962

ABSTRACT

Metabolic syndrome is growing in importance with the rising levels of obesity, type 2 diabetes, and insulin resistance. Metabolic syndrome shares many characteristics with Cushing's syndrome, which has led to investigation of the link between excess glucocorticoids and metabolic syndrome. Indeed, increased glucocorticoids from intracellular regeneration by 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) drives insulin resistance and increases adiposity, but these metabolic changes are assumed to be due to increased circulating glucocorticoids. We hypothesized that increasing the substrate for 11ß-HSD1 (11-dehydrocorticosterone, 11-DHC) would adversely affect metabolic parameters. We found that chronic administration of 11-DHC to male C57BL/6J mice resulted in increased circulating glucocorticoids, and down-regulation of the hypothalamic-pituitary-adrenal axis. This elevated 11ß-HSD1-derived corticosterone led to increased body weight gain and adiposity and produced marked insulin resistance. Surprisingly liver-specific 11ß-HSD1 knockout (LKO) mice given 11-DHC did not show any of the adverse metabolic effects seen in wild-type mice. This occurred despite the 11-DHC administration resulting in elevated circulating corticosterone, presumably from adipose tissue. Mice with global deletion of 11ß-HSD1 (global knockout) were unaffected by treatment with 11-DHC, having no increase in circulating corticosterone and exhibiting no signs of metabolic impairment. Taken together, these data show that in the absence of 11ß-HSD1 in the liver, mice are protected from the metabolic effects of 11-DHC administration, even though circulating glucocorticoids are increased. This implies that liver-derived intratissue glucocorticoids, rather than circulating glucocorticoids, contribute significantly to the development of metabolic syndrome and suggest that local action within hepatic tissue mediates these effects.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Corticosterone/analogs & derivatives , Glucocorticoids/metabolism , Liver/enzymology , Metabolic Syndrome/etiology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Adiposity , Animals , Biomarkers/blood , Biomarkers/metabolism , Corticosterone/administration & dosage , Corticosterone/adverse effects , Corticosterone/blood , Corticosterone/metabolism , Down-Regulation , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Glucocorticoids/blood , Hyperinsulinism/etiology , Hyperphagia/etiology , Hyperphagia/physiopathology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Insulin Resistance , Liver/metabolism , Male , Metabolic Syndrome/blood , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Weight Gain
4.
J Med Chem ; 55(22): 10136-47, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23088558

ABSTRACT

Inhibition of 11ß-HSD1 is viewed as a potential target for the treatment of obesity and other elements of the metabolic syndrome. We report here the optimization of a carboxylic acid class of inhibitors from AZD4017 (1) to the development candidate AZD8329 (27). A structural change from pyridine to pyrazole together with structural optimization led to an improved technical profile in terms of both solubility and pharmacokinetics. The extent of acyl glucuronidation was reduced through structural optimization of both the carboxylic acid and amide substituents, coupled with a reduction in lipophilicity leading to an overall increase in metabolic stability.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Benzoates/pharmacology , Enzyme Inhibitors/pharmacology , Glucuronides/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Adipose Tissue/drug effects , Adipose Tissue/enzymology , Animals , Benzoates/chemical synthesis , Benzoates/pharmacokinetics , Dogs , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Glucuronides/chemistry , Guinea Pigs , Humans , Liver/drug effects , Liver/enzymology , Macaca fascicularis , Mice , Models, Molecular , Molecular Structure , Protein Conformation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship , Substrate Specificity
5.
J Med Chem ; 55(12): 5951-64, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22691057

ABSTRACT

Inhibition of 11ß-HSD1 is an attractive mechanism for the treatment of obesity and other elements of the metabolic syndrome. We report here the discovery of a nicotinic amide derived carboxylic acid class of inhibitors that has good potency, selectivity, and pharmacokinetic characteristics. Compound 11i (AZD4017) is an effective inhibitor of 11ß-HSD1 in human adipocytes and exhibits good druglike properties and as a consequence was selected for clinical development.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Niacinamide/analogs & derivatives , Piperidines/pharmacology , Piperidines/pharmacokinetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Administration, Oral , Animals , Biological Availability , Dogs , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/metabolism , Humans , Inhibitory Concentration 50 , Male , Mice , Models, Molecular , Niacinamide/administration & dosage , Niacinamide/metabolism , Niacinamide/pharmacokinetics , Niacinamide/pharmacology , Piperidines/administration & dosage , Piperidines/metabolism , Protein Conformation , Rats , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...