Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Genet Eng Rev ; : 1-31, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36600517

ABSTRACT

The world is currently facing a global challenge against neoplastic diseases. Chemotherapy, hormonal therapy, surgery, and radiation therapy are some approaches used to treat cancer. However, these treatments are frequently causing side effects in patients, such as multidrug resistance, fever, weakness, and allergy, among others side effects. As a result, current research has focused on phytochemical compounds isolated from plants to treat deadly cancers. Plants are excellent resources of bioactive molecules, and many natural molecules have exceptional anticancer properties. They produce diverse anticancer derivatives such as alkaloids, terpenoids, flavonoids, pigments, and tannins, which have powerful anticancer activities against various cancer cell lines and animal models. Because of their safety, eco-friendly, and cost-effective nature, research communities have recently focused on various phytochemical bioactive molecules. Ursolic acid (UA) and its derivative compounds have anti-inflammatory, anticancer, apoptosis induction, anti-carcinogenic, and anti-breast cancer proliferation properties. Ursolic acid (UA) can improve the clinical management of human cancer because it inhibits cancer cell viability and proliferation, preventing tumour angiogenesis and metastatic activity. Therefore, the present article focuses on numerous bioactivities of Ursolic acid (UA), which can inhibit cancer cell production, mechanism of action, and modulation of anticancer properties via regulating various cellular processes.

2.
Appl Microbiol Biotechnol ; 106(17): 5823-5832, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35941256

ABSTRACT

Copper oxide nanoparticles (CuO NPs) synthesis using an environmentally benign approach, as well as their antibacterial properties. Copper sulphate pentahydrate (CuSO4.5H2O) of different concentrations (2 mM, 5 mM and 10 mM) and aqueous Nyctanthes arbor-tristis leaf extract were used to make the CuO NPs. The synthesised CuO NPs are characterised by UV-vis spectroscopy, X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). UV-vis spectroscopy confirmed the presence of CuO NPs. The functional groups of the active components were identified using the FTIR spectra of the control (leaf extract) and CuO NPs. SEM pictures revealed that the particles were rectangular, truncated triangle and spherical in shape, with sizes ranging between 4.9 nm, 18.4 nm and 23.8 nm determined using X-ray diffraction. The antibacterial activity of the produced CuO NPs was further evaluated using the well diffusion method. By observing inhibition zones around each well, the nanoparticles were revealed to have broad antibacterial action against human pathogenic bacterial strains Escherichia coli and Staphylococcus aureus withs the 7 ± 0.70-mm and 7 ± 0.21-mm inhibitory zone size respectively followed by 08 µg/mL and 2.5 µg/mL MIC respectively. Thus, these outputs concluded that the CuO NPs exhibited miraculous effect and it might be boon towards nanomedical science, pharmaceuticals and health industries. KEY POINTS: • Biosynthesis of CuO nanoparticle • Multifaceted utilization • Broad spectrum antimicrobial activity.


Subject(s)
Metal Nanoparticles , Anti-Bacterial Agents , Copper , Escherichia coli , Humans , Microbial Sensitivity Tests , Plant Extracts , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...