Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Dalton Trans ; 51(6): 2269-2277, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35073568

ABSTRACT

Mercury ions are toxic and exhibit hazardous effects on the environment and biological systems, and thus demand for the selective and sensitive detection of mercury has become considerably an important issue. Here, we have developed a diselenide containing coumarin-based probe 3 for the selective detection of Hg(II) with a "turn-on" response (a 48 fold increase in fluorescence intensity) at 438 nm. The probe could quantitatively detect Hg(II) with a detection limit of 1.32 µM in PBS solution. Moreover, the probe has operable efficiency over the physiological range with an increase in the quantum yield from 1.2% to 57.3%. The reaction of the probe with Hg(II) yielded a novel monoselenide based coumarin 4via diselenide oxidation, which was confirmed by single crystal XRD. Furthermore, the biological use of the probe for the detection of Hg(II) was confirmed in the MCF-7 cell line. To the best of our knowledge, this is the first reaction-based probe for Hg(II) via diselenide oxidation.


Subject(s)
Mercury
2.
ACS Omega ; 5(23): 14186-14193, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32566887

ABSTRACT

All aerobic cells contain reactive oxygen species (ROSs) in balance with biochemical antioxidants. Oxidative stress is developed when this balance gets disturbed because of excessive production of ROSs or depletion of antioxidants. Here, in this work, we have developed the first cyclic diselenide BODIPY-based (organoselenium-containing) probe for the selective detection of superoxide. The probe demonstrates excellent selective response for superoxide over other ROSs with nine-fold increase in fluorescence intensity. The detection limit was found to be 0.924 µM. The plausible "turn-on" mechanism has been proposed based on the spectroscopic and quantum chemical data. Usefulness of the probe for selective detection of superoxide was confirmed in mammalian breast cancer cell lines.

SELECTION OF CITATIONS
SEARCH DETAIL