Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 19(4): e1010708, 2023 04.
Article in English | MEDLINE | ID: mdl-37058535

ABSTRACT

During meiotic prophase, the essential events of homolog pairing, synapsis, and recombination are coordinated with meiotic progression to promote fidelity and prevent aneuploidy. The conserved AAA+ ATPase PCH-2 coordinates these events to guarantee crossover assurance and accurate chromosome segregation. How PCH-2 accomplishes this coordination is poorly understood. Here, we provide evidence that PCH-2 decelerates pairing, synapsis and recombination in C. elegans by remodeling meiotic HORMADs. We propose that PCH-2 converts the closed versions of these proteins, which drive these meiotic prophase events, to unbuckled conformations, destabilizing interhomolog interactions and delaying meiotic progression. Further, we find that PCH-2 distributes this regulation among three essential meiotic HORMADs in C. elegans: PCH-2 acts through HTP-3 to regulate pairing and synapsis, HIM-3 to promote crossover assurance, and HTP-1 to control meiotic progression. In addition to identifying a molecular mechanism for how PCH-2 regulates interhomolog interactions, our results provide a possible explanation for the expansion of the meiotic HORMAD family as a conserved evolutionary feature of meiosis. Taken together, our work demonstrates that PCH-2's remodeling of meiotic HORMADs has functional consequences for the rate and fidelity of homolog pairing, synapsis, recombination and meiotic progression, ensuring accurate meiotic chromosome segregation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Meiosis/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Prophase , Chromosome Pairing/genetics , ATPases Associated with Diverse Cellular Activities/genetics , Cell Cycle Proteins/genetics
2.
PLoS Genet ; 14(11): e1007701, 2018 11.
Article in English | MEDLINE | ID: mdl-30383767

ABSTRACT

Breast cancer susceptibility gene 1 (BRCA1) and binding partner BRCA1-associated RING domain protein 1 (BARD1) form an essential E3 ubiquitin ligase important for DNA damage repair and homologous recombination. The Caenorhabditis elegans orthologs, BRC-1 and BRD-1, also function in DNA damage repair, homologous recombination, as well as in meiosis. Using functional GFP fusions we show that in mitotically-dividing germ cells BRC-1 and BRD-1 are nucleoplasmic with enrichment at foci that partially overlap with the recombinase RAD-51. Co-localization with RAD-51 is enhanced under replication stress. As cells enter meiosis, BRC-1-BRD-1 remains nucleoplasmic and in foci, and beginning in mid-pachytene the complex co-localizes with the synaptonemal complex. Following establishment of the single asymmetrically positioned crossover on each chromosome pair, BRC-1-BRD-1 concentrates to the short arm of the bivalent. Localization dependencies reveal that BRC-1 and BRD-1 are interdependent and the complex fails to properly localize in both meiotic recombination and chromosome synapsis mutants. Consistent with a role for BRC-1-BRD-1 in meiotic recombination in the context of the synaptonemal complex, inactivation of BRC-1 or BRD-1 enhances the embryonic lethality of mutants defective in chromosome synapsis. Our data suggest that under meiotic dysfunction, BRC-1-BRD-1 stabilizes the RAD-51 filament and alters the recombination landscape; these two functions can be genetically separated from BRC-1-BRD-1's role in the DNA damage response. Together, we propose that BRC-1-BRD-1 serves a checkpoint function at the synaptonemal complex where it monitors and modulates meiotic recombination.


Subject(s)
BRCA1 Protein/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Meiosis/genetics , Recombination, Genetic , Synaptonemal Complex/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Alleles , Animals , BRCA1 Protein/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA Replication , Embryo, Nonmammalian , Genes, Reporter , Germ Cells , Protein Transport , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics
3.
PLoS Genet ; 10(4): e1004291, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24762417

ABSTRACT

Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing and/or recombination intermediates to slow their progression and ensure their fidelity during meiotic prophase.


Subject(s)
Crossing Over, Genetic/genetics , Meiosis/genetics , Prophase/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Nucleus/genetics , Chromosome Pairing/genetics , Chromosome Segregation/genetics , Chromosomes/genetics , DNA Repair/genetics , Mutation/genetics , Nuclear Proteins/genetics , Quality Control
4.
J Biol Chem ; 285(21): 16286-93, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20223825

ABSTRACT

Inactivation of the retinoblastoma protein (Rb) through phosphorylation is an important step in promoting cell cycle progression, and hyperphosphorylated Rb is commonly found in tumors. Rb phosphorylation prevents its association with the E2F transcription factor; however, the molecular basis for complex inhibition has not been established. We identify here the key phosphorylation events and conformational changes that occur in Rb to inhibit the specific association between the E2F transactivation domain (E2F(TD)) and the Rb pocket domain. Calorimetry assays demonstrate that phosphorylation of Rb reduces the affinity of E2F(TD) binding approximately 250-fold and that phosphorylation at Ser(608)/Ser(612) and Thr(356)/Thr(373) is necessary and sufficient for this effect. An NMR assay identifies phosphorylation-driven conformational changes in Rb that directly inhibit E2F(TD) binding. We find that phosphorylation at Ser(608)/Ser(612) promotes an intramolecular association between a conserved sequence in the flexible pocket linker and the pocket domain of Rb that occludes the E2F(TD) binding site. We also find that phosphorylation of Thr(356)/Thr(373) inhibits E2F(TD) binding in a manner that requires the Rb N-terminal domain. Taken together, our results suggest two distinct mechanisms for how phosphorylation of Rb modulates association between E2F(TD) and the Rb pocket and describe for the first time a function for the structured N-terminal domain in Rb inactivation.


Subject(s)
E2F Transcription Factors/chemistry , Retinoblastoma Protein/chemistry , Binding Sites , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Humans , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...