Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854120

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by intratumoral abundance of neutrophilic/polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) which inhibit T-cell function through JAK2/STAT3-regulated arginase activity. To overcome limitations of systemic inhibition of PMN-MDSCs in cancer-bearing patients-i.e., neutropenia and compensatory myelopoietic adaptations-we develop a nanoengineering strategy to target cell-specific signaling exclusively in PMN-MDSCs without provoking neutropenia. We conjugate a chemically modified small-molecule inhibitor of MDSC-surface receptor CXCR2 (AZD5069) with polyethylene glycol (PEG) and chemically graft AZD5069-PEG constructs onto amphiphilic polysaccharide derivatives to engineer CXCR2-homing nanoparticles (CXCR2-NP). Cy5.5 dye-loaded CXCR2-NP showed near-exclusive uptake in PMN-MDSCs compared with PDAC tumor-cells, cancer-associated fibroblasts, and macrophages. Encapsulation of JAK2/STAT3i Ruxolitinib (CXCR2-NP Ruxo ) resulted in more durable attenuation in STAT3-regulated arginase activity from PMN-MDSCs and induction of cytolytic T-cell activity vs. free Ruxolitinib in-vitro and in-vivo . Cell-specific delivery of payloads via CXCR2-homing immunonanoparticles represents a novel strategy to disrupt MDSC-mediated immunosuppression and invigorate antitumor immunity in PDAC.

2.
Cancer Discov ; 13(6): 1428-1453, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36946782

ABSTRACT

We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE: By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Neutrophils , Receptors, Tumor Necrosis Factor, Type II/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Inflammation/genetics , Tumor Microenvironment/physiology , Chemokine CXCL1/genetics , Pancreatic Neoplasms
3.
Elife ; 112022 09 15.
Article in English | MEDLINE | ID: mdl-36107485

ABSTRACT

Background: Partial/complete pathologic response following neoadjuvant chemotherapy (NAC) in pancreatic cancer (PDAC) patients undergoing pancreatectomy is associated with improved survival. We sought to determine whether neutrophil-to-lymphocyte ratio (NLR) dynamics predict pathologic response following chemotherapy in PDAC, and if manipulating NLR impacts chemosensitivity in preclinical models and uncovers potential mechanistic underpinnings underlying these effects. Methods: Pathologic response in PDAC patients (n=94) undergoing NAC and pancreatectomy (7/2015-12/2019) was dichotomized as partial/complete or poor/absent. Bootstrap-validated multivariable models assessed associations between pre-chemotherapy NLR (%neutrophils÷%lymphocytes) or NLR dynamics during chemotherapy (ΔNLR = pre-surgery-pre-chemotherapy NLR) and pathologic response, disease-free survival (DFS), and overall survival (OS). To preclinically model effects of NLR attenuation on chemosensitivity, Ptf1aCre/+; KrasLSL-G12D/+;Tgfbr2flox/flox (PKT) mice and C57BL/6 mice orthotopically injected with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1Cre(KPC) cells were randomized to vehicle, gemcitabine/paclitaxel alone, and NLR-attenuating anti-Ly6G with/without gemcitabine/paclitaxel treatment. Results: In 94 PDAC patients undergoing NAC (median:4 months), pre-chemotherapy NLR (p<0.001) and ΔNLR attenuation during NAC (p=0.002) were independently associated with partial/complete pathologic response. An NLR score = pre-chemotherapy NLR+ΔNLR correlated with DFS (p=0.006) and OS (p=0.002). Upon preclinical modeling, combining NLR-attenuating anti-Ly6G treatment with gemcitabine/paclitaxel-compared with gemcitabine/paclitaxel or anti-Ly6G alone-not only significantly reduced tumor burden and metastatic outgrowth, but also augmented tumor-infiltrating CD107a+-degranulating CD8+ T-cells (p<0.01) while dampening inflammatory cancer-associated fibroblast (CAF) polarization (p=0.006) and chemoresistant IL-6/STAT-3 signaling in vivo. Neutrophil-derived IL-1ß emerged as a novel mediator of stromal inflammation, inducing inflammatory CAF polarization and CAF-tumor cell IL-6/STAT-3 signaling in ex vivo co-cultures. Conclusions: Therapeutic strategies to mitigate neutrophil-CAF-tumor cell IL-1ß/IL-6/STAT-3 signaling during NAC may improve pathologic responses and/or survival in PDAC. Funding: Supported by KL2 career development grant by Miami CTSI under NIH Award UL1TR002736, Stanley Glaser Foundation, American College of Surgeons Franklin Martin Career Development Award, and Association for Academic Surgery Joel J. Roslyn Faculty Award (to J. Datta); NIH R01 CA161976 (to N.B. Merchant); and NCI/NIH Award P30CA240139 (to J. Datta and N.B. Merchant).


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , CD8-Positive T-Lymphocytes , Carcinoma, Pancreatic Ductal/pathology , Fibroblasts/pathology , Humans , Interleukin-6 , Lymphocytes/pathology , Mice , Mice, Inbred C57BL , Neutrophils/pathology , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras) , Receptor, Transforming Growth Factor-beta Type II , Pancreatic Neoplasms
4.
Oncogene ; 41(28): 3640-3654, 2022 07.
Article in English | MEDLINE | ID: mdl-35701533

ABSTRACT

Co-occurrent KRAS and TP53 mutations define a majority of patients with pancreatic ductal adenocarcinoma (PDAC) and define its pro-metastatic proclivity. Here, we demonstrate that KRAS-TP53 co-alteration is associated with worse survival compared with either KRAS-alone or TP53-alone altered PDAC in 245 patients with metastatic disease treated at a tertiary referral cancer center, and validate this observation in two independent molecularly annotated datasets. Compared with non-TP53 mutated KRAS-altered tumors, KRAS-TP53 co-alteration engenders disproportionately innate immune-enriched and CD8+ T-cell-excluded immune signatures. Leveraging in silico, in vitro, and in vivo models of human and murine PDAC, we discover a novel intersection between KRAS-TP53 co-altered transcriptomes, TP63-defined squamous trans-differentiation, and myeloid-cell migration into the tumor microenvironment. Comparison of single-cell transcriptomes between KRAS-TP53 co-altered and KRAS-altered/TP53WT tumors revealed cancer cell-autonomous transcriptional programs that orchestrate innate immune trafficking and function. Moreover, we uncover granulocyte-derived inflammasome activation and TNF signaling as putative paracrine mediators of innate immunoregulatory transcriptional programs in KRAS-TP53 co-altered PDAC. Immune subtyping of KRAS-TP53 co-altered PDAC reveals conflation of intratumor heterogeneity with progenitor-like stemness properties. Coalescing these distinct molecular characteristics into a KRAS-TP53 co-altered "immunoregulatory program" predicts chemoresistance in metastatic PDAC patients enrolled in the COMPASS trial, as well as worse overall survival.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adenocarcinoma/genetics , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Humans , Mice , Mutation , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Pancreatic Neoplasms
5.
Oncotarget ; 12(20): 2104-2110, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34611484

ABSTRACT

Despite increasingly thorough mechanistic understanding of the dominant genetic drivers of gastrointestinal (GI) tumorigenesis (e.g., Ras/Raf, TP53, etc.), only a small proportion of these molecular alterations are therapeutically actionable. In an attempt to address this therapeutic impasse, our group has proposed an innovative extreme outlier model to identify novel cooperative molecular vulnerabilities in high-risk GI cancers which dictate prognosis, correlate with distinct patterns of metastasis, and define therapeutic sensitivity or resistance. Our model also proposes comprehensive investigation of their downstream transcriptomic, immunomic, metabolic, or upstream epigenomic cellular consequences to reveal novel therapeutic targets in previously "undruggable" tumors with high-risk genomic features. Leveraging this methodology, our and others' data reveal that the genomic cooperativity between Ras and p53 alterations is not only prognostically relevant in GI malignancy, but may also represent the incipient molecular events that initiate and sustain innate immunoregulatory signaling networks within the GI tumor microenvironment, driving T-cell exclusion and therapeutic resistance in these cancers. As such, deciphering the unique transcriptional programs encoded by Ras-p53 cooperativity that promote innate immune trafficking and chronic inflammatory tumor-stromal-immune crosstalk may uncover immunologic vulnerabilities that could be exploited to develop novel therapeutic strategies for these difficult-to-treat malignancies.

SELECTION OF CITATIONS
SEARCH DETAIL