Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 13(20): e4857, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37900102

ABSTRACT

The interaction of RNA with specific RNA-binding proteins (RBP) leads to the establishment of complex regulatory networks through which gene expression is controlled. Careful consideration should be given to the exact environment where a given RNA/RBP interplay occurs, as the functional responses might depend on the type of organism as well as the specific cellular or subcellular contexts. This requisite becomes particularly crucial for the study of long non-coding RNAs (lncRNA), as a consequence of their peculiar tissue-specificity and timely regulated expression. The functional characterization of lncRNAs has traditionally relied on the use of established cell lines that, although useful, are unable to fully recapitulate the complexity of a tissue or organ. Here, we detail an optimized protocol, with comments and tips, to identify the RNA interactome of given RBPs by performing cross-linking immunoprecipitation (CLIP) from mouse embryonal hearts. We tested the efficiency of this protocol on the murine pCharme, a muscle-specific lncRNA interacting with Matrin3 (MATR3) and forming RNA-enriched condensates of biological significance in the nucleus. Key features • The protocol refines previous methods of cardiac extracts preparation to use for CLIP assays. • The protocol allows the quantitative RNA-seq analysis of transcripts interacting with selected proteins. • Depending on the embryonal stage, a high number of hearts can be required as starting material. • The steps are adaptable to other tissues and biochemical assays.

2.
Elife ; 122023 03 06.
Article in English | MEDLINE | ID: mdl-36877136

ABSTRACT

Long noncoding RNAs (lncRNAs) are emerging as critical regulators of heart physiology and disease, although the studies unveiling their modes of action are still limited to few examples. We recently identified pCharme, a chromatin-associated lncRNA whose functional knockout in mice results in defective myogenesis and morphological remodeling of the cardiac muscle. Here, we combined Cap-Analysis of Gene Expression (CAGE), single-cell (sc)RNA sequencing, and whole-mount in situ hybridization analyses to study pCharme cardiac expression. Since the early steps of cardiomyogenesis, we found the lncRNA being specifically restricted to cardiomyocytes, where it assists the formation of specific nuclear condensates containing MATR3, as well as important RNAs for cardiac development. In line with the functional significance of these activities, pCharme ablation in mice results in a delayed maturation of cardiomyocytes, which ultimately leads to morphological alterations of the ventricular myocardium. Since congenital anomalies in myocardium are clinically relevant in humans and predispose patients to major complications, the identification of novel genes controlling cardiac morphology becomes crucial. Our study offers unique insights into a novel lncRNA-mediated regulatory mechanism promoting cardiomyocyte maturation and bears relevance to Charme locus for future theranostic applications.


Subject(s)
Myocytes, Cardiac , RNA, Long Noncoding , Animals , Humans , Mice , Cell Differentiation/genetics , Heart Ventricles/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Nuclear Matrix-Associated Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism
3.
Front Mol Biosci ; 9: 1004746, 2022.
Article in English | MEDLINE | ID: mdl-36339717

ABSTRACT

Detecting RNA/RNA interactions in the context of a given cellular system is crucial to gain insights into the molecular mechanisms that stand beneath each specific RNA molecule. When it comes to non-protein coding RNA (ncRNAs), and especially to long noncoding RNAs (lncRNAs), the reliability of the RNA purification is dramatically dependent on their abundance. Exogenous methods, in which lncRNAs are in vitro transcribed and incubated with protein extracts or overexpressed by cell transfection, have been extensively used to overcome the problem of abundance. However, although useful to study the contribution of single RNA sub-modules to RNA/protein interactions, these exogenous practices might fail in revealing biologically meaningful contacts occurring in vivo and risk to generate non-physiological artifacts. Therefore, endogenous methods must be preferred, especially for the initial identification of partners specifically interacting with elected RNAs. Here, we apply an endogenous RNA pull-down to lncMN2-203, a neuron-specific lncRNA contributing to the robustness of motor neurons specification, through the interaction with miRNA-466i-5p. We show that both the yield of lncMN2-203 recovery and the specificity of its interaction with the miRNA dramatically increase in the presence of Dextran Sulfate Sodium (DSS) salt. This new set-up may represent a powerful means for improving the study of RNA-RNA interactions of biological significance, especially for those lncRNAs whose role as microRNA (miRNA) sponges or regulators of mRNA stability was demonstrated.

4.
EMBO J ; 41(13): e108918, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35698802

ABSTRACT

The transition from dividing progenitors to postmitotic motor neurons (MNs) is orchestrated by a series of events, which are mainly studied at the transcriptional level by analyzing the activity of specific programming transcription factors. Here, we identify a post-transcriptional role of a MN-specific transcriptional unit (MN2) harboring a lncRNA (lncMN2-203) and two miRNAs (miR-325-3p and miR-384-5p) in this transition. Through the use of in vitro mESC differentiation and single-cell sequencing of CRISPR/Cas9 mutants, we demonstrate that lncMN2-203 affects MN differentiation by sponging miR-466i-5p and upregulating its targets, including several factors involved in neuronal differentiation and function. In parallel, miR-325-3p and miR-384-5p, co-transcribed with lncMN2-203, act by repressing proliferation-related factors. These findings indicate the functional relevance of the MN2 locus and exemplify additional layers of specificity regulation in MN differentiation.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Cell Differentiation/genetics , MicroRNAs/genetics , Motor Neurons , RNA, Long Noncoding/genetics
5.
Cells ; 10(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34685492

ABSTRACT

The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.


Subject(s)
MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Regeneration , Animals , Biomarkers/metabolism , COVID-19 , Homeostasis , Humans , Mice , Muscle, Skeletal/virology , Myocardium/metabolism , Origin of Life , RNA, Circular , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , RNA, Small Untranslated/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics
6.
Cell Rep ; 33(12): 108548, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33357424

ABSTRACT

Chromatin architect of muscle expression (Charme) is a muscle-restricted long noncoding RNA (lncRNA) that plays an important role in myogenesis. Earlier evidence indicates that the nuclear Charme isoform, named pCharme, acts on the chromatin by assisting the formation of chromatin domains where myogenic transcription occurs. By combining RNA antisense purification (RAP) with mass spectrometry and loss-of-function analyses, we have now identified the proteins that assist these chromatin activities. These proteins-which include a sub-set of splicing regulators, principally PTBP1 and the multifunctional RNA/DNA binding protein MATR3-bind to sequences located within the alternatively spliced intron-1 to form nuclear aggregates. Consistent with the functional importance of pCharme interactome in vivo, a targeted deletion of the intron-1 by a CRISPR-Cas9 approach in mouse causes the release of pCharme from the chromatin and results in cardiac defects similar to what was observed upon knockout of the full-length transcript.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Introns/genetics , Nuclear Matrix-Associated Proteins/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Animals , Humans , Mice
7.
Front Cell Dev Biol ; 7: 394, 2019.
Article in English | MEDLINE | ID: mdl-32117954

ABSTRACT

In 1957, Francis Crick speculated that RNA, beyond its protein-coding capacity, could have its own function. Decade after decade, this theory was dramatically boosted by the discovery of new classes of non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and circular RNAs (circRNAs), which play a fundamental role in the fine spatio-temporal control of multiple layers of gene expression. Recently, many of these molecules have been identified in a plethora of different tissues, and they have emerged to be more cell-type specific than protein-coding genes. These findings shed light on how ncRNAs are involved in the precise tuning of gene regulatory mechanisms governing tissues homeostasis. In this review, we discuss the recent findings on the mechanisms used by lncRNAs and circRNAs to sustain skeletal and cardiac muscle formation, paying particular attention to the technological developments that, over the last few years, have aided their genome-wide identification and study. Together with lncRNAs and circRNAs, the emerging contribution of Piwi-interacting RNAs and transfer RNA-derived fragments to myogenesis will be also discussed, with a glimpse on the impact of their dysregulation in muscle disorders, such as myopathies, muscle atrophy, and rhabdomyosarcoma degeneration.

8.
EMBO J ; 37(18)2018 09 14.
Article in English | MEDLINE | ID: mdl-30177572

ABSTRACT

Myogenesis is a highly regulated process that involves the conversion of progenitor cells into multinucleated myofibers. Besides proteins and miRNAs, long noncoding RNAs (lncRNAs) have been shown to participate in myogenic regulatory circuitries. Here, we characterize a murine chromatin-associated muscle-specific lncRNA, Charme, which contributes to the robustness of the myogenic program in vitro and in vivo In myocytes, Charme depletion triggers the disassembly of a specific chromosomal domain and the downregulation of myogenic genes contained therein. Notably, several Charme-sensitive genes are associated with human cardiomyopathies and Charme depletion in mice results in a peculiar cardiac remodeling phenotype with changes in size, structure, and shape of the heart. Moreover, the existence of an orthologous transcript in human, regulating the same subset of target genes, suggests an important and evolutionarily conserved function for Charme Altogether, these data describe a new example of a chromatin-associated lncRNA regulating the robustness of skeletal and cardiac myogenesis.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/metabolism , Ventricular Remodeling , Animals , Humans , Mice , Muscle Fibers, Skeletal/pathology , Myocytes, Cardiac/pathology , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...