Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Article in English | MEDLINE | ID: mdl-38703163

ABSTRACT

BACKGROUND: Ventricular tachycardia (VT) recurrence rates remain high following ablation among patients with nonischemic cardiomyopathy (NICM). OBJECTIVES: This study sought to define the prevalence of lipomatous metaplasia (LM) in patients with NICM and VT and its association with postablation VT recurrence. METHODS: From patients who had ablation of left ventricular VT, we retrospectively identified 113 consecutive NICM patients with preprocedural contrast-enhanced cardiac computed tomography (CECT), from which LM was segmented. Nested within this cohort were 62 patients that prospectively underwent CECT and cardiac magnetic resonance from which myocardial border zone and dense late gadolinium enhancement (LGE) were segmented. A control arm of 30 NICM patients without VT with CECT was identified. RESULTS: LM was identified among 57% of control patients without VT vs 83% of patients without VT recurrence and 100% of patients with VT recurrence following ablation. In multivariable analyses, LM extent was the only independent predictor of VT recurrence, with an adjusted HR per 1-g LM increase of 1.1 (P < 0.001). Patients with LM extent ≥2.5 g had 4.9-fold higher hazard of VT recurrence than those with LM <2.5 g (P < 0.001). In the nested cohort with 32 VT recurrences, LM extent was independently associated with VT recurrence after adjustment for border zone and LGE extent (HR per 1 g increase: 1.1; P = 0.036). CONCLUSIONS: Myocardial LM is prevalent in patients with NICM of a variety of etiologies, and its extent is associated with postablation VT recurrence independent of the degree of fibrosis.

2.
Circ Cardiovasc Imaging ; 16(8): e014399, 2023 08.
Article in English | MEDLINE | ID: mdl-37526027

ABSTRACT

Myocardial lipomatous metaplasia (LM) has been increasingly reported in patients with prior myocardial infarction. Cardiac magnetic resonance and cardiac contrast-enhanced computed tomography have been used to noninvasively detect and quantify myocardial LM in postinfarct patients, and may provide useful information for understanding cardiac mechanics, arrhythmia susceptibility, and prognosis. This review aims to summarize the advantages and disadvantages, clinical applications, and imaging features of different cardiac magnetic resonance sequences and cardiac contrast-enhanced computed tomography for LM detection and quantification. We also briefly summarize LM prevalence in different cohorts of postinfarct patients and review the clinical utility of cardiac imaging in exploring myocardial LM as an arrhythmogenic substrate in patients with prior myocardial infarction.


Subject(s)
Myocardial Infarction , Tachycardia, Ventricular , Humans , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardium/pathology , Magnetic Resonance Imaging/methods , Arrhythmias, Cardiac , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/etiology , Metaplasia/pathology
3.
JACC Clin Electrophysiol ; 9(8 Pt 2): 1464-1474, 2023 08.
Article in English | MEDLINE | ID: mdl-37294264

ABSTRACT

BACKGROUND: Regional myocardial conduction velocity (CV) dispersion has not been studied in postinfarct patients with ventricular tachycardia (VT). OBJECTIVES: This study sought to compare the following: 1) the association of CV dispersion vs repolarization dispersion with VT circuit sites; and 2) myocardial lipomatous metaplasia (LM) vs fibrosis as the anatomic substrate for CV dispersion. METHODS: Among 33 postinfarct patients with VT, we characterized dense and border zone infarct tissue by late gadolinium enhancement cardiac magnetic resonance, and LM by computed tomography, with both images registered with electroanatomic maps. Activation recovery interval (ARI) was the time interval from the minimum derivative within the QRS complex to the maximum derivative within the T-wave on unipolar electrograms. CV at each EAM point was the mean CV between that point and 5 adjacent points along the activation wave front. CV and ARI dispersion were the coefficient of variation (CoV) of CV and ARI per American Heart Association (AHA) segment, respectively. RESULTS: Regional CV dispersion exhibited a much larger range than ARI dispersion, with median 0.65 vs 0.24; P < 0.001. CV dispersion was a more robust predictor of the number of critical VT sites per AHA segment than ARI dispersion. Regional LM area was more strongly associated with CV dispersion than fibrosis area. LM area was larger (median 0.44 vs 0.20 cm2; P < 0.001) in AHA segments with mean CV <36 cm/s and CoV_CV >0.65 than those with mean CV <36 cm/s and CoV_CV <0.65. CONCLUSIONS: Regional CV dispersion more strongly predicts VT circuit sites than repolarization dispersion, and LM is a critical substrate for CV dispersion.


Subject(s)
Myocardial Infarction , Tachycardia, Ventricular , Humans , Contrast Media , Gadolinium , Arrhythmias, Cardiac/complications , Fibrosis
4.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1235-1245, 2023 08.
Article in English | MEDLINE | ID: mdl-37227343

ABSTRACT

BACKGROUND: Myocardial lipomatous metaplasia (LM) has been reported to be associated with post-infarct ventricular tachycardia (VT) circuitry. OBJECTIVES: This study examined the association of scar versus LM composition with impulse conduction velocity (CV) in putative VT corridors that traverse the infarct zone in post-infarct patients. METHODS: The cohort included 31 post-infarct patients from the prospective INFINITY (Intra-Myocardial Fat Deposition and Ventricular Tachycardia in Cardiomyopathy) study. Myocardial scar, border zone, and potential viable corridors were defined by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR), and LM was defined by computed tomography. Images were registered to electroanatomic maps, and the CV at each electroanatomic map point was calculated as the mean CV between that point and 5 adjacent points along the activation wave front. RESULTS: Regions with LM exhibited lower CV than scar (median = 11.9 vs 13.5 cm/s; P < 0.001). Of 94 corridors computed from LGE-CMR and electrophysiologically confirmed to participate in VT circuitry, 93 traversed through or near LM. These critical corridors displayed slower CV (median 8.8 [IQR: 5.9-15.7] cm/s vs 39.2 [IQR: 28.1-58.5]) cm/s; P < 0.001) than 115 noncritical corridors distant from LM. Additionally, critical corridors demonstrated low-peripheral, high-center (mountain shaped, 23.3%) or mean low-level (46.7%) CV patterns compared with 115 noncritical corridors distant from LM that displayed high-peripheral, low-center (valley shaped, 19.1%) or mean high-level (60.9%) CV patterns. CONCLUSIONS: The association of myocardial LM with VT circuitry is at least partially mediated by slowing nearby corridor CV thus facilitating an excitable gap that enables circuit re-entry.


Subject(s)
Myocardial Infarction , Tachycardia, Ventricular , Humans , Contrast Media , Cicatrix/diagnostic imaging , Cicatrix/pathology , Prospective Studies , Gadolinium , Myocardium/pathology , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/complications , Arrhythmias, Cardiac/complications
5.
J Interv Card Electrophysiol ; 66(9): 2113-2123, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37129791

ABSTRACT

BACKGROUND: Late gadolinium enhancement (LGE) detected by cardiac MRI (CMR) has low correlation with low voltage zones (LVZs) detected by electroanatomical mapping (EAM). We aim to study correlation of myocardial strain by CMR- Feature Tracking (FT) alongside LGE with LVZs detected by EAM. METHODS: Nineteen consecutive CMRs of patients with EAM were analyzed offline by CMR-FT. Peak value of circumferential strain (CS), longitudinal strain (LS), and LGE was measured in each segment of the left ventricle (17-segment model). The percentage of myocardial segments with CS and LS > -17% was determined. Percentage area of LGE-scar was calculated. Global and segment-wise bipolar and unipolar voltage was collected. Percentage area of bipolar LVZ (<1.5 mV) and unipolar LVZ (<8.3 mV) was calculated. RESULTS: Mean age was 62±11 years. Mean LVEF was 37±13%. Mean global CS was -11.8±5%. Mean global LS was -11.2±4%. LGE-scar was noted in 74% of the patients. Mean percentage area of LGE-scar was 5%. There was significant correlation between percentage abnormality detected by LS with percentage bipolar LVZ (r = +0.5, p = 0.03) and combined percentage CS+LS abnormality with percentage unipolar LVZ (r = +0.5, p = 0.02). Per-unit increase in CS increased the percentage area of unipolar LVZ by 2.09 (p = 0.07) and per-unit increase in LS increased the percentage area of unipolar LVZ by 2.49 (p = 0.06). The concordance rates between CS and LS to localize segments with bipolar/unipolar LVZ were 79% and 95% compared to 63% with LGE. CONCLUSIONS: Myocardial strain detected by CMR-FT has a better correlation with electrical low voltage zones than the conventional LGE.


Subject(s)
Cardiomyopathies , Contrast Media , Humans , Middle Aged , Aged , Cicatrix/diagnostic imaging , Magnetic Resonance Imaging, Cine , Gadolinium , Cardiomyopathies/diagnostic imaging
6.
J Math Biol ; 86(4): 60, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36964799

ABSTRACT

We propose and analyze a family of epidemiological models that extend the classic Susceptible-Infectious-Recovered/Removed (SIR)-like framework to account for dynamic heterogeneity in infection risk. The family of models takes the form of a system of reaction-diffusion equations given populations structured by heterogeneous susceptibility to infection. These models describe the evolution of population-level macroscopic quantities S, I, R as in the classical case coupled with a microscopic variable f, giving the distribution of individual behavior in terms of exposure to contagion in the population of susceptibles. The reaction terms represent the impact of sculpting the distribution of susceptibles by the infection process. The diffusion and drift terms that appear in a Fokker-Planck type equation represent the impact of behavior change both during and in the absence of an epidemic. We first study the mathematical foundations of this system of reaction-diffusion equations and prove a number of its properties. In particular, we show that the system will converge back to the unique equilibrium distribution after an epidemic outbreak. We then derive a simpler system by seeking self-similar solutions to the reaction-diffusion equations in the case of Gaussian profiles. Notably, these self-similar solutions lead to a system of ordinary differential equations including classic SIR-like compartments and a new feature: the average risk level in the remaining susceptible population. We show that the simplified system exhibits a rich dynamical structure during epidemics, including plateaus, shoulders, rebounds and oscillations. Finally, we offer perspectives and caveats on ways that this family of models can help interpret the non-canonical dynamics of emerging infectious diseases, including COVID-19.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Epidemics , Humans , Stochastic Processes , COVID-19/epidemiology , Disease Outbreaks , Communicable Diseases, Emerging/epidemiology , Disease Susceptibility/epidemiology
7.
Europace ; 25(2): 496-505, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36519747

ABSTRACT

AIMS: Post-infarct myocardium contains viable corridors traversing scar or lipomatous metaplasia (LM). Ventricular tachycardia (VT) circuitry has been separately reported to associate with corridors that traverse LM and with repolarization heterogeneity. We examined the association of corridor activation recovery interval (ARI) and ARI dispersion with surrounding tissue type. METHODS AND RESULTS: The cohort included 33 post-infarct patients from the prospective Intra-Myocardial Fat Deposition and Ventricular Tachycardia in Cardiomyopathy (INFINITY) study. We co-registered scar and corridors from late gadolinium enhanced magnetic resonance, and LM from computed tomography with intracardiac electrogram locations. Activation recovery interval was calculated during sinus or ventricular pacing, as the time interval from the minimum derivative within the QRS to the maximum derivative within the T-wave on unipolar electrograms. Regional ARI dispersion was defined as the standard deviation (SD) of ARI per AHA segment (ARISD). Lipomatous metaplasia exhibited higher ARI than scar [325 (interquartile range 270-392) vs. 313 (255-374), P < 0.001]. Corridors critical to VT re-entry were more likely to traverse through or near LM and displayed prolonged ARI compared with non-critical corridors [355 (319-397) vs. 302 (279-333) ms, P < 0.001]. ARISD was more closely associated with LM than with scar (likelihood ratio χ2 50 vs. 12, and 4.2-unit vs. 0.9-unit increase in 0.01*Log(ARISD) per 1 cm2 increase per AHA segment). Additionally, LM and scar exhibited interaction (P < 0.001) in their association with ARISD. CONCLUSION: Lipomatous metaplasia is closely associated with prolonged local action potential duration of corridors and ARI dispersion, which may facilitate the propensity of VT circuit re-entry.


Subject(s)
Cardiomyopathies , Myocardial Infarction , Tachycardia, Ventricular , Humans , Cicatrix/diagnostic imaging , Cicatrix/complications , Prospective Studies , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/complications , Arrhythmias, Cardiac/complications , Myocardial Infarction/complications , Myocardial Infarction/diagnosis
9.
JACC Clin Electrophysiol ; 8(10): 1274-1285, 2022 10.
Article in English | MEDLINE | ID: mdl-36266004

ABSTRACT

BACKGROUND: Post-myocardial infarction ventricular tachycardia (VT) is due to re-entry through surviving conductive myocardial corridors across infarcted tissue. However, not all conductive corridors participate in re-entry. OBJECTIVES: This study sought to test the hypothesis that critical VT corridors are more likely to traverse near lipomatous metaplasia (LM) and that current loss is reduced during impulse propagation through such corridors. METHODS: Among 30 patients in the Prospective 2-center INFINITY (Intra-Myocardial Fat Deposition and Ventricular Tachycardia in Cardiomyopathy) study, potential VT-viable corridors within myocardial scar or LM were computed from late gadolinium enhancement cardiac magnetic resonance images. Because late gadolinium enhancement highlights both scar and LM, LM was distinguished from scar by using computed tomography. The SD of the current along each corridor was measured. RESULTS: Scar exhibited lower impedance than LM (median Z-score -0.22 [IQR: -0.84 to 0.35] vs -0.07 [IQR: -0.67 to 0.54]; P < 0.001). Among all 381 corridors, 84 were proven to participate in VT re-entry circuits, 83 (99%) of which traversed or were adjacent to LM. In comparison, only 13 (4%) non-VT corridors were adjacent to LM. Critical corridors adjacent to LM displayed lower SD of current compared with noncritical corridors through scar but distant from LM (2.0 [IQR: 1.0 to 3.4] µA vs 8.4 [IQR: 5.5 to 12.8] µA; P < 0.001). CONCLUSIONS: Corridors critical to VT circuitry traverse infarcted tissue through or near LM. This association is likely mediated by increased regional resistance and reduced current loss as impulses traverse corridors adjacent to LM.


Subject(s)
Cicatrix , Tachycardia, Ventricular , Humans , Cicatrix/pathology , Contrast Media , Gadolinium , Prospective Studies , Metaplasia/complications
10.
J Interv Card Electrophysiol ; 65(2): 543-550, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35856123

ABSTRACT

BACKGROUND: Despite luminal esophageal temperature (LET) monitoring, esophageal injury remains a risk which impacts decision making during atrial fibrillation (AF) ablation. We sought to compare procedural characteristics including radiofrequency (RF) power, duration, and LET, among ablation procedures with and without image segmentation for esophageal visualization (EV). METHODS: The retrospective cohort included 73 patients (mean age 65.2 ± 8.6 years, 36% female, 55% paroxysmal AF) who underwent pre-procedural cardiac magnetic resonance or computed tomography and LET monitoring. Of all patients, 35 were historical patients that underwent standard AF ablation without EV, and 38 were contemporary patients, 28 of whom underwent AF ablation with EV and 10 that underwent AF ablation without EV. RESULTS: Total RF time was similar between the groups. The distribution of ablation power delivery was skewed toward higher power in the contemporary patients. However, among patients in the contemporary group, the proportion of > 35 Watts lesions was lower with EV (P < 0.001). There was no difference between the max or mean LET. The standard deviation of LET change within patient during posterior wall ablation was lower in those with esophageal visualization compared to historical controls, but no change was seen compared to a smaller group of contemporary controls. No long-term clinical esophageal injury was observed. CONCLUSIONS: In a retrospective analysis, EV was successfully performed in 28 patients. EV impacted RF power delivery decisions but was unassociated with RF time, changes in LET, or long-term safety.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Female , Middle Aged , Aged , Male , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Retrospective Studies , Catheter Ablation/methods , Esophagus/diagnostic imaging , Body Temperature , Pulmonary Veins/surgery
11.
J Am Coll Radiol ; 18(11S): S380-S393, 2021 11.
Article in English | MEDLINE | ID: mdl-34794595

ABSTRACT

Noncerebral vasculitis is a wide-range noninfectious inflammatory disorder affecting the vessels. Vasculitides have been categorized based on the vessel size, such as large-vessel vasculitis, medium-vessel vasculitis, and small-vessel vasculitis. In this document, we cover large-vessel vasculitis and medium-vessel vasculitis. Due to the challenges of vessel biopsy, imaging plays a crucial role in diagnosing this entity. While CTA and MRA can both provide anatomical details of the vessel wall, including wall thickness and enhancement in large-vessel vasculitis, FDG-PET/CT can show functional assessment based on the glycolytic activity of inflammatory cells in the inflamed vessels. Given the size of the vessel in medium-vessel vasculitis, invasive arteriography is still a choice for imaging. However, high-resolution CTA images can depict small-caliber aneurysms, and thus can be utilized in the diagnosis of medium-vessel vasculitis. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.


Subject(s)
Positron Emission Tomography Computed Tomography , Vasculitis , Diagnostic Imaging , Humans , Societies, Medical , United States
12.
J Am Coll Radiol ; 18(11S): S482-S487, 2021 11.
Article in English | MEDLINE | ID: mdl-34794602

ABSTRACT

The initial diagnosis of retroperitoneal bleeding can be challenging by physical examination and clinical presentation. Prompt imaging can make the diagnosis and be lifesaving. When selecting appropriate imaging for these patient's, consideration must be made for sensitivity and ability to image the retroperitoneum, as well as speed of imaging.The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.


Subject(s)
Evidence-Based Medicine , Societies, Medical , Diagnosis, Differential , Diagnostic Imaging , Humans , United States
13.
J Cardiovasc Magn Reson ; 23(1): 120, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34689798

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall thickness, cardiomyocyte hypertrophy, and fibrosis. Adverse cardiac risk characterization has been performed using late gadolinium enhancement (LGE), native T1, and extracellular volume (ECV). Relaxation time constants are affected by background field inhomogeneity. T1ρ utilizes a spin-lock pulse to decrease the effect of unwanted relaxation. The objective of this study was to study T1ρ as compared to T1, ECV, and LGE in HCM patients. METHODS: HCM patients were recruited as part of the Novel Markers of Prognosis in Hypertrophic Cardiomyopathy study, and healthy controls were matched for comparison. In addition to cardiac functional imaging, subjects underwent T1 and T1ρ cardiovascular magnetic resonance imaging at short-axis positions at 1.5T. Subjects received gadolinium and underwent LGE imaging 15-20 min after injection covering the entire heart. Corresponding basal and mid short axis LGE slices were selected for comparison with T1 and T1ρ. Full-width half-maximum thresholding was used to determine the percent enhancement area in each LGE-positive slice by LGE, T1, and T1ρ. Two clinicians independently reviewed LGE images for presence or absence of enhancement. If in agreement, the image was labeled positive (LGE + +) or negative (LGE --); otherwise, the image was labeled equivocal (LGE + -). RESULTS: In 40 HCM patients and 10 controls, T1 percent enhancement area (Spearman's rho = 0.61, p < 1e-5) and T1ρ percent enhancement area (Spearman's rho = 0.48, p < 0.001e-3) correlated with LGE percent enhancement area. T1 and T1ρ percent enhancement areas were also correlated (Spearman's rho = 0.28, p = 0.047). For both T1 and T1ρ, HCM patients demonstrated significantly longer relaxation times compared to controls in each LGE category (p < 0.001 for all). HCM patients also showed significantly higher ECV compared to controls in each LGE category (p < 0.01 for all), and LGE -- slices had lower ECV than LGE + + (p = 0.01). CONCLUSIONS: Hyperenhancement areas as measured by T1ρ and LGE are moderately correlated. T1, T1ρ, and ECV were elevated in HCM patients compared to controls, irrespective of the presence of LGE. These findings warrant additional studies to investigate the prognostic utility of T1ρ imaging in the evaluation of HCM patients.


Subject(s)
Cardiomyopathy, Hypertrophic , Contrast Media , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/pathology , Fibrosis , Gadolinium , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Myocardium/pathology , Predictive Value of Tests
14.
Sci Rep ; 11(1): 18339, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526528

ABSTRACT

Plateaus and rebounds of various epidemiological indicators are widely reported in Covid-19 pandemics studies but have not been explained so far. Here, we address this problem and explain the appearance of these patterns. We start with an empirical study of an original dataset obtained from highly precise measurements of SARS-CoV-2 concentration in wastewater over nine months in several treatment plants around the Thau lagoon in France. Among various features, we observe that the concentration displays plateaus at different dates in various locations but at the same level. In order to understand these facts, we introduce a new mathematical model that takes into account the heterogeneity and the natural variability of individual behaviours. Our model shows that the distribution of risky behaviours appears as the key ingredient for understanding the observed temporal patterns of epidemics.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/isolation & purification , Wastewater/virology , Empirical Research , France/epidemiology , Humans , Models, Anatomic
15.
J Cardiovasc Electrophysiol ; 32(7): 1857-1864, 2021 07.
Article in English | MEDLINE | ID: mdl-33993572

ABSTRACT

INTRODUCTION: Esophageal injury during atrial fibrillation (AF) ablation is a life-threatening complication. We sought to measure the association of esophageal temperature attenuation with radiofrequency (RF) electrode impedance, contact force, and distance from the esophagus. METHODS: The retrospective study cohort included 35 patients with mean age 64 ± 10 years, of whom 74.3% were male, and 40% had persistent AF. All patients had undergone preprocedural cardiac magnetic resonance (CMR) followed by AF ablation with luminal esophageal temperature monitoring. Lesion locations were co-registered with CMR image segmentations of left atrial and esophageal anatomy. Luminal esophageal temperature, time matched RF lesion data, and ablation distance from the nearest esophageal location were collected as panel data. RESULTS: Luminal esophageal temperature changes corresponding to 3667 distinct lesions, delivered with mean power 27.9 ± 5.5 W over a mean duration of 22.2 ± 10.5 s were analyzed. In multivariable analyses, clustered per patient, examining posterior wall lesions only, and adjusted for lesion power and duration as set by the operator, lesion distance from the esophagus (-0.003°C/mm, p < .001), and baseline impedance (-0.015°C/Ω, p < .001) were associated with changes in luminal esophageal temperature. CONCLUSION: Esophageal luminal temperature rises are associated with shorter lesion distance from esophagus and lower baseline impedance during RF lesion delivery. When procedural strategy requires RF delivery near the esophagus, selection of sites with higher baseline impedance may improve safety.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Aged , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Catheter Ablation/adverse effects , Electric Impedance , Electrodes , Humans , Male , Middle Aged , Retrospective Studies , Temperature
16.
ESC Heart Fail ; 8(4): 2698-2712, 2021 08.
Article in English | MEDLINE | ID: mdl-33991175

ABSTRACT

AIMS: Skeletal muscle (SkM) abnormalities may impact exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF). We sought to quantify differences in SkM oxidative phosphorylation capacity (OxPhos), fibre composition, and the SkM proteome between HFpEF, hypertensive (HTN), and healthy participants. METHODS AND RESULTS: Fifty-nine subjects (20 healthy, 19 HTN, and 20 HFpEF) performed a maximal-effort cardiopulmonary exercise test to define peak oxygen consumption (VO2, peak ), ventilatory threshold (VT), and VO2 efficiency (ratio of total work performed to O2 consumed). SkM OxPhos was assessed using Creatine Chemical-Exchange Saturation Transfer (CrCEST, n = 51), which quantifies unphosphorylated Cr, before and after plantar flexion exercise. The half-time of Cr recovery (t1/2, Cr ) was taken as a metric of in vivo SkM OxPhos. In a subset of subjects (healthy = 13, HTN = 9, and HFpEF = 12), percutaneous biopsy of the vastus lateralis was performed for myofibre typing, mitochondrial morphology, and proteomic and phosphoproteomic analysis. HFpEF subjects demonstrated lower VO2,peak , VT, and VO2 efficiency than either control group (all P < 0.05). The t1/2, Cr was significantly longer in HFpEF (P = 0.005), indicative of impaired SkM OxPhos, and correlated with cycle ergometry exercise parameters. HFpEF SkM contained fewer Type I myofibres (P = 0.003). Proteomic analyses demonstrated (a) reduced levels of proteins related to OxPhos that correlated with exercise capacity and (b) reduced ERK signalling in HFpEF. CONCLUSIONS: Heart failure with preserved ejection fraction patients demonstrate impaired functional capacity and SkM OxPhos. Reductions in the proportions of Type I myofibres, proteins required for OxPhos, and altered phosphorylation signalling in the SkM may contribute to exercise intolerance in HFpEF.


Subject(s)
Heart Failure , Exercise Tolerance , Heart Failure/diagnosis , Heart Failure/metabolism , Humans , Muscle, Skeletal/metabolism , Oxygen Consumption , Proteomics , Stroke Volume
17.
Circulation ; 143(14): 1359-1373, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33401956

ABSTRACT

BACKGROUND: Left ventricular (LV) scar on late gadolinium enhancement (LGE) cardiac magnetic resonance has been correlated with life-threatening arrhythmic events in patients with apparently idiopathic ventricular arrhythmias (VAs). We investigated the prognostic significance of a specific LV-LGE phenotype characterized by a ringlike pattern of fibrosis. METHODS: A total of 686 patients with apparently idiopathic nonsustained VA underwent contrast-enhanced cardiac magnetic resonance. A ringlike pattern of LV scar was defined as LV subepicardial/midmyocardial LGE involving at least 3 contiguous segments in the same short-axis slice. The end point of the study was time to the composite outcome of all-cause death, resuscitated cardiac arrest because of ventricular fibrillation or hemodynamically unstable ventricular tachycardia and appropriate implantable cardioverter defibrillator therapy. RESULTS: A total of 28 patients (4%) had a ringlike pattern of scar (group A), 78 (11%) had a non-ringlike pattern (group B), and 580 (85%) had normal cardiac magnetic resonance with no LGE (group C). Group A patients were younger compared with groups B and C (median age, 40 vs 52 vs 45 years; P<0.01), more frequently men (96% vs 82% vs 55%; P<0.01), with a higher prevalence of family history of sudden cardiac death or cardiomyopathy (39% vs 14% vs 6%; P<0.01) and more frequent history of unexplained syncope (18% vs 9% vs 3%; P<0.01). All patients in group A showed VA with a right bundle-branch block morphology versus 69% in group B and 21% in group C (P<0.01). Multifocal VAs were observed in 46% of group A patients compared with 26% of group B and 4% of group C (P<0.01). After a median follow-up of 61 months (range, 34-84 months), the composite outcome occurred in 14 patients (50.0%) in group A versus 15 (19.0%) in group B and 2 (0.3%) in group C (P<0.01). After multivariable adjustment, the presence of LGE with ringlike pattern remained independently associated with increased risk of the composite end point (hazard ratio, 68.98 [95% CI, 14.67-324.39], P<0.01). CONCLUSIONS: In patients with apparently idiopathic nonsustained VA, nonischemic LV scar with a ringlike pattern is associated with malignant arrhythmic events.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Heart Ventricles/physiopathology , Adult , Arrhythmias, Cardiac/mortality , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis
18.
Can Assoc Radiol J ; 72(1): 13-24, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33138621

ABSTRACT

The application of big data, radiomics, machine learning, and artificial intelligence (AI) algorithms in radiology requires access to large data sets containing personal health information. Because machine learning projects often require collaboration between different sites or data transfer to a third party, precautions are required to safeguard patient privacy. Safety measures are required to prevent inadvertent access to and transfer of identifiable information. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI Ethical and Legal standing committee with the mandate to guide the medical imaging community in terms of best practices in data management, access to health care data, de-identification, and accountability practices. Part 1 of this article will inform CAR members on principles of de-identification, pseudonymization, encryption, direct and indirect identifiers, k-anonymization, risks of reidentification, implementations, data set release models, and validation of AI algorithms, with a view to developing appropriate standards to safeguard patient information effectively.


Subject(s)
Artificial Intelligence/ethics , Data Anonymization/ethics , Diagnostic Imaging/ethics , Radiologists/ethics , Algorithms , Canada , Humans , Machine Learning , Societies, Medical
19.
Can Assoc Radiol J ; 72(1): 25-34, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33140663

ABSTRACT

The application of big data, radiomics, machine learning, and artificial intelligence (AI) algorithms in radiology requires access to large data sets containing personal health information. Because machine learning projects often require collaboration between different sites or data transfer to a third party, precautions are required to safeguard patient privacy. Safety measures are required to prevent inadvertent access to and transfer of identifiable information. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI Ethical and Legal standing committee with the mandate to guide the medical imaging community in terms of best practices in data management, access to health care data, de-identification, and accountability practices. Part 2 of this article will inform CAR members on the practical aspects of medical imaging de-identification, strengths and limitations of de-identification approaches, list of de-identification software and tools available, and perspectives on future directions.


Subject(s)
Artificial Intelligence/ethics , Data Anonymization/ethics , Diagnostic Imaging/ethics , Radiologists/ethics , Algorithms , Canada , Humans , Machine Learning , Societies, Medical
20.
Ann Am Thorac Soc ; 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33022182

ABSTRACT

COVID-19 is an illness caused by a novel coronavirus that has rapidly escalated into a global pandemic leading to an urgent medical effort to better characterize this disease biologically, clinically and by imaging. In this review, we present the current approach to imaging of COVID-19 pneumonia. We focus on the appropriate utilization of thoracic imaging modalities to guide clinical management. We will also describe radiologic findings that are considered typical, atypical and generally not compatible with of COVID-19 infection. Further, we review imaging examples of COVID-19 imaging mimics, such as organizing pneumonia, eosinophilic pneumonia and other viral infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...