Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Antivir Chem Chemother ; 18(1): 49-59, 2007.
Article in English | MEDLINE | ID: mdl-17354651

ABSTRACT

The antiviral activity of iminocyclitol compounds with a deoxynojirimycin (DNJ) head group and either a straight chain alkyl or alkylcycloalkyl group attached to the nitrogen atom have been tested in vitro against multiple-enveloped viruses. Several of these analogues were superior to previously reported DNJ compounds. Iminocyclitols that inhibit the glycan-processing enzyme endoplasmic-reticular glucosidase have been shown to inhibit the morphogenesis of viruses that bud from the endoplasmic reticulum (ER) at non-cytotoxic concentrations. Bovine viral diarrhoea virus (BVDV) has been used as a surrogate system for study of the hepatitis C virus, which belong to the virus family (Flaviviridae) as West Nile virus (WNV) and dengue virus (DV). N-Nonyl-DNJ (NNDNJ) was previously reported to have micromolar antiviral activity against BVDV, but a limiting toxicity profile. N-Butylcyclohexyl-DNJ (SP169) was shown to be as potent as NNDNJ in assays against BVDV and less toxic. However, it was inactive against hepatitis B virus (HBV). The present study reports efforts to improve the performance profiles of these compounds. Introduction of an oxygen atom into the N-alkyl side chain of DNJ, either as an ether or a hydroxyl functionality, reduced toxicity but sacrificed potency. Introduction of a hydroxyl group at the tertiary carbon junction of the cycloalkyl and linear alkyl group, as in N-pentyl-(1-hydroxycyclohexyl)-DNJ (OSL-9511), led to a structure that was as well tolerated as DNJ (CC50>500 microM), but retained micromolar antiviral activity against all ER morphogenesis budding viruses tested: BVDV, WNV, DV and HBV. The implication of this modification to the development of broad-spectrum antiviral agents is discussed.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Diarrhea Virus 1, Bovine Viral/drug effects , Diarrhea Virus 2, Bovine Viral/drug effects , Hepatitis B virus/drug effects , West Nile virus/drug effects , Animals , Cattle , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL