Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 28(7): 1867-1883, 2018 10.
Article in English | MEDLINE | ID: mdl-30055061

ABSTRACT

Habitat loss and degradation induced by human development are among the major threats to biodiversity worldwide. In this study, we tested our ability to predict the response of bird communities (128 species) to land-use changes in southern Quebec (~483,100 km2 ) over the last 30 yr (between 1984-1989 and 2010-2014) by using species distribution models (299,302 occurrences in 30,408 locations) from a hindcasting perspective. Results were grouped by functional guilds to infer potential impacts on ecosystem services, and to relate model transferability (i.e., ability of our models to be generalized to other times and scales) to specific functional and life-history traits. Overall, our models were able to accurately predict, both in space and time, habitat suitability for 69% of species, especially for granivorous, nonmigrant, tree-nesting species, and species that are tied to agricultural areas under intensive use. These findings indicate that model transferability depends upon specific functional and life-history traits, providing further evidence that species' ecologies affect the ability of models to accurately predict bird distributions. Declining bird species were mostly short-distance migrants that were associated with open habitats (agricultural and nonproductive forest) with aerial insectivorous or granivorous diets, which may be related to agricultural intensification and land abandonment. Land-use changes were positive for some forest bird species that were mainly associated with mixed and deciduous forests, generalist diets and tree-nesting strategies. Yet cavity-nesting birds have suffered substantial reductions in their distributions, suggesting that cumulative effects of intensive logging and wildfires on mature forests pose a threat for forest-specialist species. Habitat suitability changes predicted by our coarse-scale species distribution models partially agreed with the long-term trends reported by the North American Breeding Bird Survey. Our findings confirm land-use change as a key driving force for shaping bird communities in southern Quebec, together with the need to explicitly incorporate it into global change scenarios that better inform decision-makers on conservation and management.


Subject(s)
Agriculture , Animal Distribution , Birds , Forests , Animals , Ecosystem , Models, Biological , Quebec
2.
eNeuro ; 5(6)2018.
Article in English | MEDLINE | ID: mdl-30627635

ABSTRACT

The nervous system seamlessly integrates perception and action. This ability is essential for stable representation of and appropriate responses to the external environment. How the sensorimotor integration underlying this ability occurs at the level of individual neurons is of keen interest. In Caenorhabditis elegans, RIA interneurons receive input from sensory pathways and have reciprocal connections with head motor neurons. RIA simultaneously encodes both head orientation and sensory stimuli, which may allow it to integrate these two signals to detect the spatial distribution of stimuli across head sweeps and generate directional head responses. Here, we show that blocking synaptic release from RIA disrupts head orientation behaviors in response to unilaterally presented stimuli. We found that sensory encoding in RIA is gated according to head orientation. This dependence on head orientation is independent of motor encoding in RIA, suggesting a second, posture-dependent pathway upstream of RIA. This gating mechanism may allow RIA to selectively attend to stimuli that are asymmetric across head sweeps. Attractive odor removal during head bends triggers rapid head withdrawal in the opposite direction. Unlike sensory encoding, this directional response is dependent on motor inputs to and synaptic output from RIA. Together, these results suggest that RIA is part of a sensorimotor pathway that is dynamically regulated according to head orientation at two levels: the first is a gate that filters sensory representations in RIA, and the second is a switch that routes RIA synaptic output to dorsal or ventral head motor neurons.


Subject(s)
Head Movements/physiology , Interneurons/metabolism , Orientation/physiology , Sensory Gating/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Head , Luminescent Proteins/genetics , Luminescent Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...