Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 3(2): 156-172, 2022 02.
Article in English | MEDLINE | ID: mdl-35228749

ABSTRACT

The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.


Subject(s)
Aminohydrolases , Leukemia, Myeloid, Acute , Aminohydrolases/genetics , Humans , Hydrolases , Leukemia, Myeloid, Acute/drug therapy , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multifunctional Enzymes/genetics , Thymidine
2.
Cell Chem Biol ; 28(12): 1693-1702.e6, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34192523

ABSTRACT

Ganciclovir (GCV) is the first-line therapy against human cytomegalovirus (HCMV), a widespread infection that is particularly dangerous for immunodeficient individuals. Closely resembling deoxyguanosine triphosphate, the tri-phosphorylated metabolite of GCV (GCV-TP) is preferentially incorporated by the viral DNA polymerase, thereby terminating chain extension and, eventually, viral replication. However, the treatment outcome of GCV varies greatly among individuals, therefore warranting better understanding of its metabolism. Here we show that NUDT15, a Nudix hydrolase known to metabolize thiopurine triphosphates, can similarly hydrolyze GCV-TP through biochemical studies and co-crystallization of the NUDT15/GCV-TP complex. More critically, GCV efficacy was potentiated in HCMV-infected cells following NUDT15 depletion by RNAi or inhibition by an in-house-developed, nanomolar NUDT15 inhibitor, TH8321, suggesting that pharmacological targeting of NUDT15 is a possible avenue to improve existing anti-HCMV regimens. Collectively, the data further implicate NUDT15 as a broad-spectrum metabolic regulator of nucleoside analog therapeutics, such as thiopurines and GCV.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus/drug effects , Ganciclovir/pharmacology , Pyrophosphatases/metabolism , Antiviral Agents/chemistry , Cell Line, Tumor , Female , Ganciclovir/chemistry , Humans , Hydrolysis , Microbial Sensitivity Tests , Recombinant Proteins/metabolism
3.
J Biol Chem ; 296: 100568, 2021.
Article in English | MEDLINE | ID: mdl-33753169

ABSTRACT

The enzyme NUDT15 efficiently hydrolyzes the active metabolites of thiopurine drugs, which are routinely used for treating cancer and inflammatory diseases. Loss-of-function variants in NUDT15 are strongly associated with thiopurine intolerance, such as leukopenia, and preemptive NUDT15 genotyping has been clinically implemented to personalize thiopurine dosing. However, understanding the molecular consequences of these variants has been difficult, as no structural information was available for NUDT15 proteins encoded by clinically actionable pharmacogenetic variants because of their inherent instability. Recently, the small molecule NUDT15 inhibitor TH1760 has been shown to sensitize cells to thiopurines, through enhanced accumulation of 6-thio-guanine in DNA. Building upon this, we herein report the development of the potent and specific NUDT15 inhibitor, TH7755. TH7755 demonstrates a greatly improved cellular target engagement and 6-thioguanine potentiation compared with TH1760, while showing no cytotoxicity on its own. This potent inhibitor also stabilized NUDT15, enabling analysis by X-ray crystallography. We have determined high-resolution structures of the clinically relevant NUDT15 variants Arg139Cys, Arg139His, Val18Ile, and V18_V19insGlyVal. These structures provide clear insights into the structural basis for the thiopurine intolerance phenotype observed in patients carrying these pharmacogenetic variants. These findings will aid in predicting the effects of new NUDT15 sequence variations yet to be discovered in the clinic.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Mutation , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/genetics , Thioguanine/chemistry , Thioguanine/pharmacology , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Pyrophosphatases/chemistry
4.
Nat Chem Biol ; 16(10): 1120-1128, 2020 10.
Article in English | MEDLINE | ID: mdl-32690945

ABSTRACT

The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.


Subject(s)
Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Binding Sites , Cell Line , Drug Design , Drug Development , Escherichia coli , Humans , Inorganic Pyrophosphatase/antagonists & inhibitors , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Structure-Activity Relationship
5.
ACS Chem Biol ; 15(7): 1842-1851, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32412740

ABSTRACT

Signal transducer and activator of transcription (STAT) proteins have important biological functions; however, deregulation of STAT signaling is a driving force behind the onset and progression of inflammatory diseases and cancer. While their biological roles suggest that STAT proteins would be valuable targets for developing therapeutic agents, STAT proteins are notoriously difficult to inhibit using small drug-like molecules, as they do not have a distinct inhibitor binding site. Despite this, a multitude of small-molecule STAT inhibitors have been proposed, primarily focusing on inhibiting STAT3 protein to generate novel cancer therapies. Demonstrating that inhibitors bind to their targets in cells has historically been a very challenging task. With the advent of modern target engagement techniques, such as the cellular thermal shift assay (CETSA), interactions between experimental compounds and their biological targets can be detected with relative ease. To investigate interactions between STAT proteins and inhibitors, we herein developed STAT CETSAs and evaluated known STAT3 inhibitors for their ability to engage STAT proteins in biological settings. While potent binding was detected between STAT proteins and peptidic STAT inhibitors, small-molecule inhibitors elicited variable responses, most of which failed to stabilize STAT3 proteins in cells and cell lysates. The described STAT thermal stability assays represent valuable tools for evaluating proposed STAT inhibitors.


Subject(s)
Aminosalicylic Acids/metabolism , Cyclic S-Oxides/metabolism , Peptides/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Sulfonamides/metabolism , Cell Line, Tumor , Heating , Humans , Protein Binding , Protein Stability
6.
J Pharm Biomed Anal ; 160: 80-88, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30086509

ABSTRACT

STAT3 protein is an established target for the development of new cancer therapeutic agents. Despite lacking a traditional binding site for small molecule inhibitors, many STAT3 inhibitors have been identified and explored for their anti-cancer activity. Because STAT3 signaling is mediated by protein-protein interactions, indirect methods are often employed to determine if proposed STAT3 inhibitors bind to STAT3 protein. While established STAT3 inhibition assays (such as the fluorescence polarization assay, electrophoretic mobility shift assay and ELISAs) have been used to identify novel inhibitors of STAT3 signaling, methods that directly assess STAT3 protein-inhibitor interactions could facilitate the development of novel inhibitors. In this context, we herein report new STAT3 binding assays based on differential scanning fluorimetry (DSF) and differential scanning light scattering (DSLS) to characterize interactions between STAT3 protein and inhibitors. Several peptide and small molecule STAT3 inhibitors have been evaluated, and new insight into how these compounds may interact with STAT3 is provided.


Subject(s)
Drug Development/methods , Fluorometry/methods , Peptides/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Binding Sites , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , High-Throughput Screening Assays/methods , Light , Peptides/chemistry , Protein Binding , Protein Domains , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , STAT3 Transcription Factor/chemistry , STAT3 Transcription Factor/isolation & purification , Scattering, Radiation , Temperature
7.
Cell Chem Biol ; 24(12): 1429-1431, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29272698

ABSTRACT

Ubiquitin-specific protease 7 is a validated anticancer target; thus, selective USP7 inhibitors are of great interest. In this issue of Cell Chemical Biology, Lamberto et al. (2017) and Pozhidaeva et al. (2017) report important insights into the structural inhibitor-enzyme interplay, lighting the way toward the development of selective inhibitors.


Subject(s)
Ubiquitin Thiolesterase , Ubiquitin-Specific Peptidase 7
9.
J Med Chem ; 60(10): 4279-4292, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28508636

ABSTRACT

The dCTP pyrophosphatase 1 (dCTPase) is a nucleotide pool "housekeeping" enzyme responsible for the catabolism of canonical and noncanonical nucleoside triphosphates (dNTPs) and has been associated with cancer progression and cancer cell stemness. We have identified a series of piperazin-1-ylpyridazines as a new class of potent dCTPase inhibitors. Lead compounds increase dCTPase thermal and protease stability, display outstanding selectivity over related enzymes and synergize with a cytidine analogue against leukemic cells. This new class of dCTPase inhibitors lays the first stone toward the development of drug-like probes for the dCTPase enzyme.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Pyrophosphatases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Leukemia/drug therapy , Leukemia/enzymology , Molecular Docking Simulation , Pyrophosphatases/metabolism
10.
Biochem Biophys Res Commun ; 487(2): 403-408, 2017 05 27.
Article in English | MEDLINE | ID: mdl-28416386

ABSTRACT

Inhibition of transcriptional regulators of bacterial pathogens with the aim of reprogramming their metabolism to modify their antibiotic susceptibility constitutes a promising therapeutic strategy. One example is the bio-activation of the anti-tubercular pro-drug ethionamide, which activity could be enhanced by inhibiting the transcriptional repressor EthR. Recently, we discovered that inhibition of a second transcriptional repressor, EthR2, leads to the awakening of a new ethionamide bio-activation pathway. The x-ray structure of EthR2 was solved at 2.3 Å resolution in complex with a compound called SMARt-420 (Small Molecule Aborting Resistance). Detailed comparison and structural analysis revealed interesting insights for the upcoming structure-based design of EthR2 inhibitors as an alternative to revert ethionamide resistance in Mycobacterium tuberculosis.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Isoxazoles/chemistry , Molecular Docking Simulation , Mycobacterium tuberculosis/metabolism , Repressor Proteins/chemistry , Repressor Proteins/ultrastructure , Spiro Compounds/chemistry , Binding Sites , Models, Chemical , Protein Binding , Protein Conformation , Protein Interaction Mapping , Structure-Activity Relationship
11.
Oncotarget ; 8(14): 23713-23726, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28423595

ABSTRACT

The antimetabolite 5-Fluorouracil (5-FU) is used in the treatment of various forms of cancer and has a complex mode of action. Despite 6 decades in clinical application the contribution of 5-FdUTP and dUTP [(5-F)dUTP] and 5-FUTP misincorporation into DNA and RNA respectively, for 5-FU-induced toxicity is still under debate.This study investigates DNA replication defects induced by 5-FU treatment and how (5-F)dUTP accumulation contributes to this effect. We reveal that 5-FU treatment leads to extensive problems in DNA replication fork progression, causing accumulation of cells in S-phase, DNA damage and ultimately cell death. Interestingly, these effects can be reinforced by either depletion or inhibition of the deoxyuridine triphosphatase (dUTPase, also known as DUT), highlighting the importance of (5-F)dUTP accumulation for cytotoxicity.With this study, we not only extend the current understanding of the mechanism of action of 5-FU, but also contribute to the characterization of dUTPase inhibitors. We demonstrate that pharmacological inhibition of dUTPase is a promising approach that may improve the efficacy of 5-FU treatment in the clinic.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , DNA Replication/drug effects , Enzyme Inhibitors/pharmacology , Fluorouracil/pharmacology , Neoplasms/drug therapy , Pyrophosphatases/antagonists & inhibitors , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Drug Synergism , Enzyme Inhibitors/administration & dosage , Fluorouracil/administration & dosage , HeLa Cells , Humans , Neoplasms/enzymology , Neoplasms/genetics
13.
Science ; 355(6330): 1206-1211, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28302858

ABSTRACT

Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis, circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide.


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Ethionamide/metabolism , Extensively Drug-Resistant Tuberculosis/microbiology , Isoxazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Spiro Compounds/pharmacology , Animals , DNA/metabolism , Ethionamide/pharmacology , Humans , Mice , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Oxadiazoles/pharmacology , Piperidines/pharmacology , Protein Binding/drug effects , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism
14.
Medchemcomm ; 8(7): 1553-1560, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-30108867

ABSTRACT

In this study, we provide insight into the metabolic profile of a series of piperazin-1-ylpyridazines suffering from rapid in vitro intrinsic clearance in a metabolic stability assay using liver microsomes (e.g. compound 1 MLM/HLM t1/2 = 2/3 min). Aided by empirical metabolite identification and computational predictive models, we designed the structural modifications required to improve in vitro intrinsic clearance by more than 50-fold (e.g. compound 29 MLM/HLM t1/2 = 113/105 min).

15.
Nat Commun ; 6: 7871, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26238318

ABSTRACT

Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including deoxyribonucleoside triphosphates (dNTPs). Targeting dNTP pool sanitizing enzymes, such as MTH1, is a highly promising anticancer strategy. The MTH2 protein, known as NUDT15, is described as the second human homologue of bacterial MutT with 8-oxo-dGTPase activity. We present the first NUDT15 crystal structure and demonstrate that NUDT15 prefers other nucleotide substrates over 8-oxo-dGTP. Key structural features are identified that explain different substrate preferences for NUDT15 and MTH1. We find that depletion of NUDT15 has no effect on incorporation of 8-oxo-dGTP into DNA and does not impact cancer cell survival in cell lines tested. NUDT17 and NUDT18 were also profiled and found to have far less activity than MTH1 against oxidized nucleotides. We show that NUDT15 is not a biologically relevant 8-oxo-dGTPase, and that MTH1 is the most prominent sanitizer of the cellular dNTP pool known to date.


Subject(s)
DNA Repair Enzymes/metabolism , Deoxyguanine Nucleotides/metabolism , Deoxyribonucleotides/metabolism , Oxidation-Reduction , Oxidative Stress , Phosphoric Monoester Hydrolases/metabolism , Pyrophosphatases/metabolism , Blotting, Western , Cell Line, Tumor , Cell Survival , Crystallization , HCT116 Cells , HeLa Cells , Humans , MCF-7 Cells , Pyrophosphatases/chemistry , Substrate Specificity
16.
Chemistry ; 21(20): 7394-8, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25809883

ABSTRACT

A two-step synthesis of structurally diverse pyrrole-containing bicyclic systems is reported. ortho-Nitro-haloarenes coupled with vinylic N-methyliminodiacetic acid (MIDA) boronates generate ortho-vinyl-nitroarenes, which undergo a "metal-free" nitrene insertion, resulting in a new pyrrole ring. This novel synthetic approach has a wide substrate tolerance and it is applicable in the preparation of more complex "drug-like" molecules. Interestingly, an ortho-nitro-allylarene derivative furnished a cyclic ß-aminophosphonate motif.

17.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695224

ABSTRACT

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Subject(s)
DNA Repair Enzymes/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/metabolism , Nucleotides/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Catalytic Domain , Cell Death/drug effects , Cell Survival/drug effects , Crystallization , DNA Damage , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Deoxyguanine Nucleotides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Neoplasms/pathology , Oxidation-Reduction/drug effects , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrophosphatases/antagonists & inhibitors , Reproducibility of Results , Xenograft Model Antitumor Assays , Nudix Hydrolases
18.
J Med Chem ; 56(15): 6190-9, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23819803

ABSTRACT

The antimalarial compound fosmidomycin targets DXR, the enzyme that catalyzes the first committed step in the MEP pathway, producing the essential isoprenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. The MEP pathway is used by a number of pathogens, including Mycobacterium tuberculosis and apicomplexan parasites, and differs from the classical mevalonate pathway that is essential in humans. Using a structure-based approach, we designed a number of analogues of fosmidomycin, including a series that are substituted in both the Cα and the hydroxamate positions. The latter proved to be a stable framework for the design of inhibitors that extend from the polar and cramped (and so not easily druggable) substrate-binding site and can, for the first time, bridge the substrate and cofactor binding sites. A number of these compounds are more potent than fosmidomycin in terms of killing Plasmodium falciparum in an in vitro assay; the best has an IC50 of 40 nM.


Subject(s)
Aldose-Ketose Isomerases/antagonists & inhibitors , Antimalarials/chemical synthesis , Fosfomycin/analogs & derivatives , Aldose-Ketose Isomerases/chemistry , Antimalarials/chemistry , Antimalarials/pharmacology , Crystallography, X-Ray , Escherichia coli/enzymology , Fosfomycin/chemical synthesis , Fosfomycin/chemistry , Fosfomycin/pharmacology , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Mycobacterium tuberculosis/enzymology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protein Binding , Protein Conformation , Structure-Activity Relationship
19.
J Med Chem ; 55(14): 6391-402, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22738293

ABSTRACT

In this paper, we describe the screening of a 14640-compound library using a novel whole mycobacteria phenotypic assay to discover inhibitors of EthR, a transcriptional repressor implicated in the innate resistance of Mycobacterium tuberculosis to the second-line antituberculosis drug ethionamide. From this screening a new chemical family of EthR inhibitors bearing an N-phenylphenoxyacetamide motif was identified. The X-ray structure of the most potent compound crystallized with EthR inspired the synthesis of a 960-member focused library. These compounds were tested in vitro using a rapid thermal shift assay on EthR to accelerate the optimization. The best compounds were synthesized on a larger scale and confirmed as potent ethionamide boosters on M. tuberculosis -infected macrophages. Finally, the cocrystallization of the best optimized analogue with EthR revealed an unexpected reorientation of the ligand in the binding pocket.


Subject(s)
Acetamides/chemical synthesis , Acetamides/pharmacology , Antitubercular Agents/pharmacology , Drug Discovery , Ethionamide/pharmacology , High-Throughput Screening Assays , Repressor Proteins/antagonists & inhibitors , Acetamides/chemistry , Animals , Cell Line , Chemistry Techniques, Synthetic , Drug Synergism , Ligands , Macrophages/drug effects , Macrophages/microbiology , Mice , Models, Molecular , Mycobacterium tuberculosis/drug effects , Protein Conformation , Repressor Proteins/chemistry
20.
J Med Chem ; 55(1): 68-83, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22098589

ABSTRACT

Mycobacterial transcriptional repressor EthR controls the expression of EthA, the bacterial monooxygenase activating ethionamide, and is thus largely responsible for the low sensitivity of the human pathogen Mycobacterium tuberculosis to this antibiotic. We recently reported structure-activity relationships of a series of 1,2,4-oxadiazole EthR inhibitors leading to the discovery of potent ethionamide boosters. Despite high metabolic stability, pharmacokinetic evaluation revealed poor mice exposure; therefore, a second phase of optimization was required. Herein a structure-property relationship study is reported according to the replacement of the two aromatic heterocycles: 2-thienyl and 1,2,4-oxadiazolyl moieties. This work was done using a combination of structure-based drug design and in vitro/ex vivo evaluations of ethionamide boosters on the targeted protein EthR and on the human pathogen Mycobacterium tuberculosis. Thanks to this process, we identified compound 42 (BDM41906), which displays improved efficacy in addition to high exposure to mice after oral administration.


Subject(s)
Antitubercular Agents/chemical synthesis , Ethionamide/pharmacokinetics , Oxadiazoles/chemical synthesis , Piperidines/chemical synthesis , Prodrugs/pharmacokinetics , Repressor Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacokinetics , Cell Line , Crystallography, X-Ray , Drug Design , Drug Synergism , In Vitro Techniques , Macrophages/drug effects , Macrophages/microbiology , Mice , Microsomes, Liver/metabolism , Models, Molecular , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Oxadiazoles/chemistry , Oxadiazoles/pharmacokinetics , Piperidines/chemistry , Piperidines/pharmacokinetics , Repressor Proteins/chemistry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...