Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Type of study
Publication year range
1.
Dalton Trans ; 52(45): 16927-16934, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37927125

ABSTRACT

Pure micro- and nanocrystalline powders of the layered-kagome zinc orthovanadate BaZn3(VO4)2(OH)2 have been successfully prepared and thoroughly characterised. Microstructured samples (BaZn3-MPs) have been produced by hydrothermal reaction using synthetic martyite Zn3V2O7(OH)2·2H2O as the starting reagent. Nanoparticles (NPs) with an average size of ≈ 60 nm (BaZn3-NPs-7h) or ≈ 50 nm (BaZn3-NPs-25min) have been obtained by using a coprecipitation method at ambient pressure, and by varying the stirring time. Rietveld refinements of X-ray diffraction data indicate that micro- and nanostructured BaZn3(VO4)2(OH)2 both crystallize in a R3̄m structure very similar to that of the known layered-kagome compound BaCo3(VO4)2(OH)2. Transmission electron microscopy observation of BaZn3-NPs-7h and BaZn3-NPs-25min reveals crystallized NPs with homogenous distributions of Ba, Zn, and V elements. FT-IR and Raman spectra show subtle differences between micro- and nanostructured samples which cannot be linked to any differences in the average crystal structures. The high resolution 51V MAS NMR spectrum of BaZn3-MPs shows a single isotropic line attributed to VO43- groups with C3v point group. The spectra of the nanostructured samples reveal the presence of a weak additional signal which decreases in intensity with increasing the NPs size, and which has been tentatively assigned to the presence at the surface of the NPs of a small amount of V5+ ions in a different chemical environment. Nanostructuring also impacts the optical properties of BaZn3(VO4)2(OH)2. The UV-vis absorption spectra of NPs exhibit an additional weak transition in the visible domain which is not observed for the microstructured sample.

2.
Dalton Trans ; 52(11): 3501-3507, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36846873

ABSTRACT

Microplatelets of the layered-kagome compound BaCo3(VO4)2(OH)2, which is the Co2+ analogue of mineral vesignieite BaCu3(VO4)2(OH)2, have been prepared with very high yield by hydrothermal reaction using synthetic karpenkoite Co3V2O7(OH)2·2H2O as starting reagent. The Rietveld refinement of X-ray diffraction data indicates that Co3V2O7(OH)2·2H2O is isostructural with martyite Zn3V2O7(OH)2·2H2O. Two single-phased samples of microstructured BaCo3(VO4)2(OH)2 have been characterized using powder X-ray diffraction, FT-IR and Raman spectroscopies, thermal analyses, scanning electron microscopy, energy-dispersive X-ray spectroscopy and magnetisation measurements. Their crystallite sizes perpendicular to the c-axis are in the range of 92(3) to 146(6) nm and depend on the synthesis conditions. Results have been compared to those previously obtained for quasi-spherical nanoparticles having a crystallite size of the order of 20 nm, to explore the effect of the crystallite size on the properties of BaCo3(VO4)2(OH)2. This study highlights that the magnetic properties depend on the crystallite sizes only at low temperatures.

3.
Inorg Chem ; 60(16): 12602-12609, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34337949

ABSTRACT

A cationic boron dipyrromethene (BODIPY) derivative (1+) has been successfully combined with two polyoxometalates (POMs), the Lindqvist-type [W6O19]2- and the ß-[Mo8O26]4- units, into three new supramolecular fluorescent materials (1)2[W6O19]·2CH3CN, (1)2[W6O19], and (1)4[Mo8O26]·DMF·H2O. The resulting hybrid compounds have been fully characterized by a combination of single-crystal X-ray diffraction, IR and UV-vis spectroscopies, and photoluminescence analyses. This self-assembly approach prevents any π-π stacking interactions not only between the BODIPY units, responsible for aggregation-caused quenching (ACQ) effects, but also between the BODIPY and the POMs, avoiding intermolecular charge-transfer effects. Noticeably, the POM units do not only act as bulky spacers, but their negative charge density drives the molecular arrangement of the 1+ luminophore, strongly modifying its fluorescence in the solid state. As a consequence, the 1+ cations are organized into dimers in (1)2[W6O19]·2CH3CN and (1)2[W6O19], which are weakly emissive at room temperature, and in a more compact layered assembly in (1)4[Mo8O26]·DMF·H2O, which exhibits a red-shifted and intense emission upon similar photoexcitation.

4.
Inorg Chem ; 58(24): 16322-16325, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31793288

ABSTRACT

This work highlights for the first time the photoluminescence (PL) properties of two new [Ln(Mo8O26)2]5- (Ln = Eu, Sm) lanthanide-containing polyoxometalates. Stable crystals of their tetrabutylammonium salts were synthesized, and their structures were confirmed by single-crystal X-ray diffraction. The robustness of the [Ln(Mo8O26)2]5- complexes in an acetonitrile solution has been evidenced by Fourier transform Raman and PL spectroscopies. The tetraphenylphosphonium derivatives were obtained by a salt metathesis reaction. The two series exhibit high thermal stability in air and are efficient phosphors at room temperature.

5.
Inorg Chem ; 58(12): 7822-7827, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31124659

ABSTRACT

Here, we report a study of white-ochre powders with targeted composition MnWO4 prepared via a coprecipitation method. Through X-ray total scattering combined with pair distribution function analysis and Rietveld refinement of X-ray diffraction data, we find that their crystal structure is similar to that of bulk-MnWO4, despite a mean crystallite size of 1.0-1.6 nm and a significant deviation of the average chemical composition from MnWO4. The chemical formula derived from elemental and thermogravimetric analyses is Mn0.8WO3.6(OH)0.4·3H2O. X-ray absorption and magnetic susceptibility measurements show that Mn and W have the same oxidation states as in MnWO4. No magnetic ordering or spin glass or superparamagnetic behavior is observed above 2 K, unlike in the case of MnWO4 nanocrystals having a mean size higher than 10 nm.

6.
Chem Asian J ; 14(10): 1642-1646, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30325113

ABSTRACT

Two new supramolecular fluorescent hybrid materials, combining for the first time [M6 O19 ]2- (M=Mo, W) polyoxometalates (POMs) and aggregation-induced emission (AIE)-active 1-methyl-1,2,3,4,5-pentaphenyl-phospholium (1+ ), were successfully synthesized. This novel molecular self-assembling strategy allows designing efficient solid-state emitters, such as (1)2 [W6 O19 ], by directing favorably the balance between the AIE and aggregation-caused quenching (ACQ) effects using both anion-π+ and H-bonding interactions in the solid state. Combined single-crystal X-ray diffraction, Raman, UV-vis and photoluminescence analyses highlighted that the nucleophilic oxygen-enriched POM surfaces strengthened the rigidity of the phospholium via strong C-H⋅⋅⋅O contacts, thereby exalting its solid-state luminescence. Besides, the bulky POM anions prevented π-π stacking interactions between the luminophores, blocking detrimental self-quenching effects.

7.
Front Chem ; 6: 425, 2018.
Article in English | MEDLINE | ID: mdl-30320059

ABSTRACT

The luminescent [EuW10O36]9- polyoxometalate has been introduced into the cavities of the highly porous zirconium luminescent metal-organic framework UiO-67 via a direct synthesis approach, affording the EuW10@UiO-67 hybrid. Using a combination of techniques (TGA, BET, elemental analysis, EDX mapping,…) this new material has been fully characterized, evidencing that it contains only 0.25% in europium and that the polyoxometalate units are located inside the octahedral cavities and not at the surface of the UiO-67 crystallites. Despite the low amount of europium, it is shown that EuW10@UiO-67 acts as a solid-state luminescent sensor for the detection of amino-acids, the growth of the emission intensity globally following the growth of the amino-acid pKa. In addition, EuW10@UiO-67 acts as a sensor for the detection of metallic cations, with a high sensitivity for Fe3+. Noticeably, the recyclability of the reported material has been established. Finally, it is shown that the dual-luminescent EuW10@UiO-67 material behave as a self-calibrated-ratiometric thermometer in the physiological range.

8.
Inorg Chem ; 54(22): 10623-31, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26502801

ABSTRACT

Polycrystalline samples of Mn1-xCuxWO4 (x ≤ 0.5) have been prepared by a solid-state synthesis as well as from a citrate synthesis at moderate temperature (850 °C). The goal is to study changes in the structural, magnetic, and dielectric properties of magnetoelectric type-II multiferroic MnWO4 caused by replacing Jahn-Teller-inactive Mn(2+) (d(5), S = 5/2) ions with Jahn-Teller-active Cu(2+) (d(9), S = 1/2) ions. Combination of techniques including scanning electron microscopy, powder X-ray and neutron diffraction, and Raman spectroscopy demonstrates that the polycrystalline samples with low copper content 0 ≤ x ≤ 0.25 are solid solution that forms in the monoclinic P2/c space group. Rietveld analyses indicate that Cu atoms substitutes for Mn atoms at the Mn crystallographic site of the MnWO4 structure and suggest random distributions of Jahn-Teller-distorted CuO6 octahedra in the solid solution. Magnetic susceptibility reveals that only 5% of Cu substitution suppresses the nonpolar collinear AF1 antiferromagnetic structure observed in pure MnWO4. Type-II multiferroicity survives a weak Cu substitution rate (x < 0.15). Multiferroic transition temperature and Néel temperature increase as the amount of Cu increases. New trends in some of the magnetic properties and in dielectric behaviors are observed for x = 0.20 and 0.25. Careful analysis of the magnetic susceptibility reveals that the incorporation of Cu into MnWO4 strengthens the overall antiferromagnetic interaction and reduces the magnetic frustration.

9.
Chem Commun (Camb) ; 51(89): 16088-91, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26390409

ABSTRACT

The tuning of the fluorescence through the activation of the photochromic part in an unprecedented covalent spiropyran-polyoxometalate-BODIPY tricomponent points out the high photofatigue resistance of such molecular switches.


Subject(s)
Benzopyrans/chemistry , Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Indoles/chemistry , Light , Nitro Compounds/chemistry , Tungsten Compounds/chemistry , Molecular Structure
10.
Chemistry ; 21(29): 10537-47, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26076183

ABSTRACT

Six polyoxometalates containing Mn(II) , Mn(III) , or Fe(III) as the heteroelement were synthesized in water by treating Mo(VI) precursors with biologically active bisphosphonates (alendronate (Ale), zoledronate (Zol), an n-alkyl bisphosphonate (BPC9 ), an aminoalkyl bisphosphonate (BPC8 NH2 )) in the presence of additional metal ions. The Pt complex was synthesized from a polyoxomolybdate bisphosphonate precursor with Mo(VI) ions linked by the 2-pyridyl analogue of alendronate (AlePy). The complexes Mo4 Ale2 Mn, Mo4 Zol2 Mn, Mo4 Ale2 Fe, Mo4 Zol2 Fe, Mo4 (BPC8 NH2 )2 Fe, and Mo4 (BPC9 )2 Fe contain two dinuclear Mo(VI) cores bound to a central heterometallic ion. The oxidation state of manganese was determined by magnetic measurements. Complexes Mo12 (AlePy)4 and Mo12 (AlePy)4 Pt4 were studied by solid-state NMR spectroscopy and the photochromic properties were investigated in the solid state; both methods confirmed the complexation of Pt. Activity against the human breast adenocarcinoma cell line MCF-7 was determined and the most potent compound was Mn(III) -containing Mo4 Zol2 Mn (IC50 ≈1.3 µM). Unlike results obtained with vanadium-containing polyoxometalate bisphosphonates, cell growth inhibition was rescued by the addition of geranylgeraniol, which reverses the effects of bisphosphonates on isoprenoid biosynthesis/protein prenylation. The results indicate an important role for both the heterometallic element and the bisphosphonate ligand in the mechanism of action of the most active compounds.


Subject(s)
Diphosphonates/chemical synthesis , Diphosphonates/pharmacology , Imidazoles/chemistry , Molybdenum/chemistry , Molybdenum/pharmacology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Breast Neoplasms , Cell Line , Crystallography, X-Ray , Diphosphonates/chemistry , Humans , Iron/chemistry , Ligands , Magnetic Resonance Spectroscopy , Manganese/chemistry , Organometallic Compounds/chemistry , Oxidation-Reduction , Zoledronic Acid
11.
Inorg Chem ; 52(19): 11156-63, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24050151

ABSTRACT

The first systems associating in a single molecule polyoxotungstates (POTs) and photochromic organic groups have been elaborated. Using the (TBA)4[PW11O39{Sn(C6H4I)}] precursor, two hybrid organic-inorganic species where a spiropyran derivative (SP) has been covalently grafted onto a {PW11Sn} fragment via a Sonogashira coupling have been successfully obtained. Alternatively, a complex containing a silicotungstate {PW11Si2} unit connected to two spiropyran entities has been characterized. The purity of these species has been assessed using several techniques, including (1)H and (31)P NMR spectroscopy, mass spectrometry, and electrochemical measurements. The optical properties of the hybrid materials have been investigated both in solution and in the solid state. These studies reveal that the grafting of SPs onto POTs does not significantly alter the photochromic behavior of the organic chromophore in solution. In contrast, these novel hybrid SP-POT materials display highly effective solid-state photochromism from neutral SP molecules initially nonphotochromic in the crystalline state. The photoresponses of the SP-POT systems in the solid state strongly depend on the nature and the number of grafted SP groups.

12.
Inorg Chem ; 52(11): 6440-9, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23679344

ABSTRACT

Ultrathin Ag2Mo3O10·2H2O nanowires (NWs) were synthesized by soft chemistry under atmospheric pressure from a hybrid organic-inorganic polyoxometalate (CH3NH3)2[Mo7O22] and characterized by powder X-ray diffraction, DSC/TGA analyses, FT-IR and FT-Raman spectroscopies, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Their diameters are a few tens of nanometers and hence much thinner than that found for silver molybdates commonly obtained under hydrothermal conditions. The optical properties of Ag2Mo3O10·2H2O NWs before and after UV irradiation were investigated by UV-vis-NIR diffuse reflectance spectroscopy revealing, in addition to photoreduction of Mo(6+) to Mo(5+) cations, in situ photogeneration of well-dispersed silver Ag(0) nanoparticles on the surface of the NWs. The resulting Ag@Ag2Mo3O10·2H2O heterostructure was confirmed by electron energy-loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS), and Auger spectroscopy. Concomitant reduction of Mo(6+) and Ag(+) cations under UV excitation was discussed on the basis of electronic band structure calculations. The Ag@Ag2Mo3O10·2H2O nanocomposite is an efficient visible-light-driven plasmonic photocatalyst for degradation of Rhodamine B dye in aqueous solution.


Subject(s)
Molybdenum/chemistry , Nanowires/chemistry , Oxygen/chemistry , Silver/chemistry , Molecular Structure , Particle Size , Surface Properties , Water/chemistry
13.
Inorg Chem ; 52(2): 555-7, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23297648

ABSTRACT

For the very first time, sulfonium polyoxometalate (POM) assemblies are shown to develop efficient solid-state photochromism in ambient conditions. The optical properties of the already known Rb(0.75)(NH(4))(5.25)[(Mo(3)O(8))(2)O(O(3)PC(CH(2)S(CH(3))(2))OPO(3))(2)]·8H(2)O (1) and a new material (Me(3)S)(4)[Mo(8)O(26)] (2) under UV excitation are investigated by diffuse reflectance spectroscopy, revealing that the color change effect is highly tunable playing with the nature of the POM. A mechanism involving the photoreduction of Mo(6+) cations associated with electron transfers from the sulfonium cations toward the POMs is proposed.

14.
Chem Commun (Camb) ; 48(99): 12103-5, 2012 Dec 25.
Article in English | MEDLINE | ID: mdl-23139932

ABSTRACT

Polyoxometalates covalently linked to one or two spiropyran entities have been isolated. These organic-inorganic hybrids exhibit multi-electrochromic and photochromic properties.

15.
Inorg Chem ; 51(4): 2291-302, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22283587

ABSTRACT

Seven hybrid organic-inorganic bisphosphonate molybdenum(VI) polyoxometalate complexes with the general formula [(Mo(3)O(8))(4)(O(3)PC(C(m)H(2m)NRR'R″)(O)PO(3))(4)](8-) (m = 3; R, R', and R″ = H or CH(3)) and [(Mo(3)O(8))(2)(O)(O(3)PC(C(m)H(2m)NRR'R″)(O)PO(3))(2)](6-) (m = 3 or 4; R, R', and R″ = H or CH(3)) have been synthesized and their structures solved using single-crystal X-ray diffraction. These compounds are made of a {Mo(12)} or a {Mo(6)} inorganic core functionalized by various alkylammonium bisphosphonates, with these ligands differing by the length of their alkyl chains and the number of methyl groups grafted on the N atom. The nature of the counter-cations (Na(+), K(+), Rb(+), Cs(+), and/or NH(4)(+)) constituting these materials has also been modulated. (31)P NMR spectroscopic studies in aqueous media have shown that all the dodecanuclear complexes reported here are stable in solution, whereas for the hexanuclear compounds, a dynamic equilibrium between two isomers has been evidenced, and the corresponding standard thermodynamic parameters determined for one of them. The electrochemical properties of six representative compounds of this family have been investigated. It has been found that the Mo(6+)/Mo(5+) reduction potential is similar for all the polyoxometalates studied. Besides, it is shown that electrochemical cycling is an efficient method for the deposition of these compounds on a surface. The photochromic properties of all the complexes reported herein have been studied in the solid state. Under irradiation in the near ultraviolet (UV), the {Mo(12)} systems shift from white to reddish-brown, while the {Mo(6)} compounds develop a purple coloration. The coloration kinetics has been systematically quantified and the optical band gaps, the salient coloration kinetic parameters and the coloration kinetic half-life times have been determined. This has evidenced that several of these materials develop very strong and rapid UV-induced color changes, with remarkable coloration contrasts. Finally, the optical properties of these systems are discussed in light of several salient parameters as the POM topology, the nature of the grafted bisphosphonate ligand, and the design of the hydrogen-bonding network at the organic-inorganic interface.

16.
Inorg Chem ; 51(1): 142-9, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22171614

ABSTRACT

Two new hybrid organic-inorganic molybdates based on layered (2/∞)[Mo(n)O(3n+1)](2-) blocks and organoammonium cations (+)(Me(x)H(3-x)N)(CH(2))(6)(NH(3-x)Me(x))(+) (x = 0-1), namely, (H(3)N(CH(2))(6)NH(3))[Mo(7)O(22)]·H(2)O (1) and (MeH(2)N(CH(2))(6)NH(2)Me)[Mo(9)O(28)] (2), have been synthesized under hydrothermal conditions. The (2/∞)[Mo(9)O(28)](2-) unit in 2 is an unprecedented member of the (2/∞)[Mo(n)O(3n+1)](2-) family with the n value extended to 9. The structural filiation between the (2/∞)[Mo(n)O(3n+1)](2-) (n = 5, 7, 9) blocks is well established, and their structural similarity with the (2/∞)[MoO(3)] slabs in α-MoO(3) is also discussed. Single-crystal X-ray analyses show that the (2/∞)[Mo(n)O(3n+1)](2-) layers in 1 and 2 are pillared in the three-dimensional networks by the organic cations with a similar connection at the organic-inorganic interface. In addition, a correlation between the topology of the (2/∞)[Mo(n)O(3n+1)](2-) blocks in 1 and 2 and the overall sizes of the associated organic cations is pointed out. Finally, the efficiency of Fourier transform Raman spectroscopy to easily discriminate the different (2/∞)[Mo(n)O(3n+1)](2-) blocks (n = 5, 7, 9) in hybrid organic-inorganic layered molybdate materials is clearly evidenced.

17.
Inorg Chem ; 50(18): 8790-6, 2011 Sep 19.
Article in English | MEDLINE | ID: mdl-21859113

ABSTRACT

A new concept of photoresponsive composites has been elaborated by intimately connecting a Photochromic Phase (PP), (H(2)DABCO)(2)(HDMA)(0.5)Na(0.75)(H(3)O)(0.75)[Mo(8)O(27)]·3H(2)O (1), with a second hybrid organic-inorganic molybdate material, (H(2)DABCO)(HDABCO)[Fe(OH)(6)Mo(6)O(18)]·4H(2)O (2) acting as an Oxidation Catalytic Phase (OCP) toward the former once photoexcited. The association of both the PP and the OCP in the composite drastically improves the bleaching process of the PP alone because of efficient electronic transfers through the OCP-PP interface without affecting significantly its photoinduced color change characteristic. Two OCP-PP composites with different PP weight percents have been obtained by associating 1 with 2. The optical properties of these composites before and after UV irradiation have been investigated by Diffuse Reflectance Spectroscopy, and the strong impact of the OCP on the fading kinetics of the PP has been clearly highlighted.

18.
Inorg Chem ; 49(24): 11309-16, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21080705

ABSTRACT

We investigate the reactivity of MoO(4)(2-) toward six organoammonium cations (+)(Me(3-x)H(x)N)(CH(2))(2)(NH(y)Me(3-y))(+) (x, y = 1-3) at different synthesis temperatures ranging from 70 to 180 °C. A total of 16 hybrid organic-inorganic materials have been synthesized at an initial pH of 2, via ambient pressure and hydrothermal routes, namely, (H(2)en)[Mo(3)O(10)]·H(2)O (1), (H(2)en)[Mo(3)O(10)] (2), (H(2)en)[Mo(5)O(16)] (3), (H(2)MED)(2)[Mo(8)O(26)]·2H(2)O (4), (H(2)MED)[Mo(5)O(16)] (5), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (6), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (7), (N,N'-H(2)DMED)(2)[Mo(8)O(26)] (8), (N,N'-H(2)DMED)[Mo(5)O(16)] (9), (H(2)TriMED)(2)[Mo(8)O(26)]·4H(2)O (10), (H(2)TriMED)(2)[Mo(8)O(26)]·2H(2)O (11), (H(2)TriMED)[Mo(7)O(22)] (12), (H(2)TMED)(2)[Mo(8)O(26)]·2H(2)O (13), (H(2)TMED)(2)[Mo(8)O(26)] (14), (H(2)TMED)(2)[Mo(8)O(26)] (15), and (H(2)TMED)[Mo(7)O(22)] (16). All of these compounds contain different polyoxomolybdate (Mo-POM) blocks, i.e., discrete ß-[Mo(8)O(26)](4-) blocks in 6, 10, 13, 14, (1)/(∞)[Mo(3)O(10)](2-), and (1)/(∞)[Mo(8)O(26)](4-) polymeric chains in 1, 2, 4, 7, 8, and 15, respectively, and (2)/(∞)[Mo(5)O(16)](2-) and (2)/(∞)[Mo(7)O(22)](2-) layers in 3, 5, 9, 12, and 16, respectively. The structures of 5, 9, and 14 have been resolved by single-crystal X-ray analyses. The characterization of the different Mo-POM blocks in 1-16 by Fourier transform Raman spectroscopy is reported. The impact of the synthesis temperature on both the composition and topology of the Mo-POM blocks is highlighted.

19.
Chem Commun (Camb) ; 46(41): 7733-5, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20830421

ABSTRACT

The presence of alkylammonium groups covalently grafted on bisphosphonato ligands induces photochromic properties to ligand-coordinated polyoxomolybdate systems. Such intrinsically photoactive polyanions can be used for the preparation of materials combining photochromic polyoxometalates and functional countercations.

20.
Inorg Chem ; 48(2): 574-80, 2009 Jan 19.
Article in English | MEDLINE | ID: mdl-19099426

ABSTRACT

The excellent photochromic properties of (H(2)DABCO)(2)(HDMA)(0.5)Na(0.75)(H(3)O)(0.75)[Mo(8)O(27)] x 3 H(2)O (4), a new member of the (H(2)DABCO)(2)(A)(x)[Mo(8)O(27)] x n H(2)O series, are compared with those of (H(2)DABCO)(2)(NH(4))(2)[Mo(8)O(27)] x 4 H(2)O (1), (H(2)DABCO)(2)(H(2)pipz)[Mo(8)O(27)] (2), and (H(2)pipz)(3)[Mo(8)O(27)] (3). All these powdered materials turn from white to purple under illumination at 365 nm, which is associated with photoreduction of Mo(6+) cations into Mo(5+) cations. We show that the rates of coloration, which increase in the order 1 < 3, 2 < 4, are related to the decrease in the concentration of reducible Mo(6+) centers with irradiation time and follow a second-order reaction law because the event of light absorption at a reducible Mo(6+) site does not necessarily coincide with that of the N(+)-H bond breaking in the N(+)-H...O hydrogen bond associated with the Mo(6+) site. First-principles density functional electronic structure calculations were carried out to find that this trend correlates with the homolytic dissociation energies of the N(+)-H bonds in the organic cations HDMA(+), H(2)pipz(2+), H(2)DABCO(2+), and NH(4)(+). This observation is consistent with a photochromic mechanism based on the homolytic cleavage of N(+)-H bonds rather than on the heterolytic cleavage of N(+)-H bonds.


Subject(s)
Molybdenum/chemistry , Organometallic Compounds/chemistry , Photochemical Processes , Quaternary Ammonium Compounds/chemistry , Color , Hydrogen/chemistry , Hydrogen Bonding , Kinetics , Models, Chemical , Quantum Theory , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...