Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 11(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37628478

ABSTRACT

An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification. In this work, we present a novel technique that used Haar wavelets to analyze the complexity of OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19 patients during illness and after recovery. The performance of the proposed technique was compared with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy (MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE). Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE, MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of the proposed algorithm for large datasets and in the context of other biomedical signal classifications.

2.
Multimed Tools Appl ; : 1-31, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37362745

ABSTRACT

A central nervous system disorder is usually referred to as epilepsy. In epilepsy brain activity becomes abnormal, leading to times of abnormal behavior or seizures, and at times loss of awareness. Consequently, epilepsy patients face problems in daily life due to precautions they must take to adapt to this condition, particularly when they use heavy equipment, e.g., vehicle derivation. Epilepsy studies rely primarily on electroencephalography (EEG) signals to evaluate brain activity during seizures. It is troublesome and time-consuming to manually decide the location of seizures in EEG signals. The automatic detection framework is one of the principal tools to help doctors and patients take appropriate precautions. This paper reviews the epilepsy mentality disorder and the types of seizure, preprocessing operations that are performed on EEG data, a generally extracted feature from the signal, and a detailed view on classification procedures used in this problem and provide insights on the difficulties and future research directions in this innovative theme. Therefore, this paper presents a review of work on recent methods for the epileptic seizure process along with providing perspectives and concepts to researchers to present an automated EEG-based epileptic seizure detection system using IoT and machine learning classifiers for remote patient monitoring in the context of smart healthcare systems. Finally, challenges and open research points in EEG seizure detection are investigated.

3.
Brain Inform ; 8(1): 1, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33580323

ABSTRACT

Seizure is an abnormal electrical activity of the brain. Neurologists can diagnose the seizure using several methods such as neurological examination, blood tests, computerized tomography (CT), magnetic resonance imaging (MRI) and electroencephalogram (EEG). Medical data, such as the EEG signal, usually includes a number of features and attributes that do not contains important information. This paper proposes an automatic seizure classification system based on extracting the most significant EEG features for seizure diagnosis. The proposed algorithm consists of five steps. The first step is the channel selection to minimize dimensionality by selecting the most affected channels using the variance parameter. The second step is the feature extraction to extract the most relevant features, 11 features, from the selected channels. The third step is to average the 11 features extracted from each channel. Next, the fourth step is the classification of the average features using the classification step. Finally, cross-validation and testing the proposed algorithm by dividing the dataset into training and testing sets. This paper presents a comparative study of seven classifiers. These classifiers were tested using two different methods: random case testing and continuous case testing. In the random case process, the KNN classifier had greater precision, specificity, positive predictability than the other classifiers. Still, the ensemble classifier had a higher sensitivity and a lower miss-rate (2.3%) than the other classifiers. For the continuous case test method, the ensemble classifier had higher metric parameters than the other classifiers. In addition, the ensemble classifier was able to detect all seizure cases without any mistake.

4.
Article in English | MEDLINE | ID: mdl-30861361

ABSTRACT

This paper presents a new approach for modeling of DNA sequences for the purpose of exon detection. The proposed model adopts the sum-of-sinusoids concept for the representation of DNA sequences. The objective of the modeling process is to represent the DNA sequence with few coefficients. The modeling process can be performed on the DNA signal as a whole or on a segment-by-segment basis. The created models can be used instead of the original sequences in a further spectral estimation process for exon detection. The accuracy of modeling is evaluated evaluated by using the Root Mean Square Error (RMSE) and the R-square metrics. In addition, non-parametric spectral estimation methods are used for estimating the spectral of both original and modeled DNA sequences. The results of exon detection based on original and modeled DNA sequences coincide to a great extent, which ensures the success of the proposed sum-of-sinusoids method for modeling of DNA sequences.


Subject(s)
Base Sequence , DNA/chemistry , Exons , Computational Biology , Databases, Nucleic Acid , Models, Molecular , Nucleic Acid Conformation , Nucleotides/chemistry , Sequence Analysis, DNA
5.
Am J Alzheimers Dis Other Demen ; 31(3): 282-93, 2016 May.
Article in English | MEDLINE | ID: mdl-26371347

ABSTRACT

The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques.


Subject(s)
Alzheimer Disease/diagnosis , Data Interpretation, Statistical , Diagnosis, Computer-Assisted/methods , Support Vector Machine , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...