Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Toxicol In Vitro ; 86: 105510, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36372310

ABSTRACT

This study aimed to compare the aerosol chemistry and in vitro toxicological profiles of two prototype Heated Tobacco Product (p-HTP) variants to the 1R6F Reference Cigarette. In the neutral red uptake screen the p-HTPs were 37-39-fold less potent than 1R6F, in the micronucleus assay, responses to the p-HTPs were 8-22-fold less, and in the Ames test mutagenicity was weak or removed compared to 1R6F. The cardiovascular scratch wound assay revealed 58-fold greater wound healing impairment following exposure to 1R6F smoke extracts than the p-HTPs. Furthermore, in seven cell stress-related high content screening endpoints (cell count, cytochrome c release, mitochondrial membrane potential, GSH depletion, NFkB translocation, phosphorylation of c-jun and phosphorylation of H2AX), at 4 and 24 h, responses were substantially greater to 1R6F smoke extracts at comparable nicotine levels. The reduced in vitro effects of the p-HTPs were attributed to substantial reductions (90-97%) in selected HPHCs measured compared to in 1R6F smoke. The multiple endpoint in vitro assessment approach provides greater mechanistic insight and the first reported toxicological characterisation of these p-HTPs in the literature. Overall, the findings contribute to the growing weight of evidence that HTPs may offer a reduced harm mode of nicotine delivery to adult smokers.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Nicotine/toxicity , Smoke/adverse effects , Nicotiana
2.
Regul Toxicol Pharmacol ; 91: 190-196, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29074275

ABSTRACT

The effect of smoking intensity on cigar smoke emissions was assessed under a range of puff frequencies and puff volumes. In order to potentially reduce emissions variability and to identify patterns as accurately as possible, cigar weights and diameters were measured, and outliers were excluded prior to smoking. Portions corresponding to 25%, 50%, 75% and 100% of the cigar, measured down to the butt length, were smoked under several smoking conditions, to assess nicotine, CO and water yields. The remaining cigar butts were analysed for total alkaloids, nicotine, and moisture. Results showed accumulation effects during the burning process having a significant impact on smoke emission levels. Condensation and evaporation occur and lead to smoke emissions dependent on smoking intensity. Differences were observed for CO on one side as a gas phase compound and nicotine on the other side as a particulate phase compound. For a given intensity, while CO emission increases linearly as the cigar burns, nicotine and water emissions exhibited an exponential increase. Our investigations showed that a complex phenomena occurs during the course of cigar smoking which makes emission data: difficult to interpret, is potentially misleading to the consumer, and inappropriate for exposure assessment. The results indicate that, tobacco content and physical parameters may well be the most robust basis for product characterisation and comparison rather than smoke emission.


Subject(s)
Nicotiana/chemistry , Smoke/analysis , Tobacco Products/analysis , Carbon Monoxide/chemistry , Nicotine/chemistry , Tobacco Smoking , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL