Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Hum Genet ; 141(11): 1761-1769, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35488064

ABSTRACT

Cerebral cavernous malformations (CCM) are vascular malformations consisting of collections of enlarged capillaries occurring in the brain or spinal cord. These vascular malformations can occur sporadically or susceptibility to develop these can be inherited as an autosomal dominant trait due to mutation in one of three genes. Over a decade ago, we described a 77.6 Kb germline deletion spanning exons 2-10 in the CCM2 gene found in multiple affected individuals from seemingly unrelated families. Segregation analysis using linked, microsatellite markers indicated that this deletion may have arisen at least twice independently. In the ensuing decades, many more CCM patients have been identified with this deletion. In this present study we examined 27 reportedly unrelated affected individuals with this deletion. To investigate the origin of the deletion at base pair level resolution, we sequenced approximately 10 Kb upstream and downstream from the recombination junction on the deleted allele. All patients showed the identical SNP haplotype across this combined 20 Kb interval. In parallel, genealogical records have traced 11 of these individuals to five separate pedigrees dating as far back as the 1600-1700s. These haplotype and genealogical data suggest that these families and the remaining "unrelated" samples converge on a common ancestor due to a founder mutation occurring centuries ago on the North American continent. We also note that another gene, NACAD, is included in this deletion. Although patient self-reporting does not indicate an apparent phenotypic consequence for heterozygous deletion of NACAD, further investigation is warranted for these patients.


Subject(s)
Carrier Proteins/genetics , Hemangioma, Cavernous, Central Nervous System , Proto-Oncogene Proteins , Hemangioma, Cavernous, Central Nervous System/genetics , Humans , Intellectual Disability , Micrognathism , Mutation , Pedigree , Proto-Oncogene Proteins/genetics , Ribs/abnormalities , Sequence Deletion
3.
Nature ; 594(7862): 271-276, 2021 06.
Article in English | MEDLINE | ID: mdl-33910229

ABSTRACT

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Mutation , Neoplasms/genetics , Animals , Animals, Newborn , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gain of Function Mutation , Hemangioma, Cavernous, Central Nervous System/blood supply , Hemangioma, Cavernous, Central Nervous System/metabolism , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Loss of Function Mutation , MAP Kinase Kinase Kinase 3/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Neoplasms/blood supply , Neoplasms/pathology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
4.
Angiogenesis ; 23(4): 651-666, 2020 11.
Article in English | MEDLINE | ID: mdl-32710309

ABSTRACT

Cerebral cavernous malformations (CCMs) are ectatic capillary-venous malformations that develop in approximately 0.5% of the population. Patients with CCMs may develop headaches, focal neurologic deficits, seizures, and hemorrhages. While symptomatic CCMs, depending upon the anatomic location, can be surgically removed, there is currently no pharmaceutical therapy to treat CCMs. Several mouse models have been developed to better understand CCM pathogenesis and test therapeutics. The most common mouse models induce a large CCM burden that is anatomically restricted to the cerebellum and contributes to lethality in the early days of life. These inducible models thus have a relatively short period for drug administration. We developed an inducible CCM3 mouse model that develops CCMs after weaning and provides a longer period for potential therapeutic intervention. Using this new model, three recently proposed CCM therapies, fasudil, tempol, vitamin D3, and a combination of the three drugs, failed to substantially reduce CCM formation when treatment was administered for 5 weeks, from postnatal day 21 (P21) to P56. We next restricted Ccm3 deletion to the brain vasculature and provided greater time (121 days) for CCMs to develop chronic hemorrhage, recapitulating the human lesions. We also developed the first model of acute CCM hemorrhage by injecting mice harboring CCMs with lipopolysaccharide. These efficient models will enable future drug studies to more precisely target clinically relevant features of CCM disease: CCM formation, chronic hemorrhage, and acute hemorrhage.


Subject(s)
Hemangioma, Cavernous, Central Nervous System/pathology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Acute Disease , Animals , Apoptosis Regulatory Proteins/deficiency , Brain/blood supply , Brain/pathology , Cholecalciferol/pharmacology , Chronic Disease , Cyclic N-Oxides/pharmacology , Disease Models, Animal , Gene Deletion , Hemangioma, Cavernous, Central Nervous System/complications , Hemorrhage/complications , Lipopolysaccharides , Mice, Inbred C57BL , Models, Biological , Phenotype , Spin Labels
5.
J Exp Med ; 217(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32648916

ABSTRACT

Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation.


Subject(s)
ADAMTS5 Protein/metabolism , Hemangioma, Cavernous, Central Nervous System/etiology , Versicans/metabolism , ADAMTS1 Protein/metabolism , ADAMTS4 Protein/metabolism , Animals , Disease Models, Animal , Endothelium, Vascular/metabolism , Female , Genetic Association Studies , Hemangioma, Cavernous, Central Nervous System/embryology , Hemangioma, Cavernous, Central Nervous System/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Proteolysis , White Matter/metabolism
6.
Acta Neuropathol Commun ; 7(1): 132, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31426861

ABSTRACT

Cerebral cavernous malformations (CCMs) are dilated capillaries causing epilepsy and stroke. Inheritance of a heterozygous mutation in CCM3/PDCD10 is responsible for the most aggressive familial form of the disease. Here we studied the differences and commonalities between the transcriptomes of microdissected lesional neurovascular units (NVUs) from acute and chronic in vivo Ccm3/Pdcd10ECKO mice, and cultured brain microvascular endothelial cells (BMECs) Ccm3/Pdcd10ECKO.We identified 2409 differentially expressed genes (DEGs) in acute and 2962 in chronic in vivo NVUs compared to microdissected brain capillaries, as well as 121 in in vitro BMECs with and without Ccm3/Pdcd10 loss (fold change ≥ |2.0|; p < 0.05, false discovery rate corrected). A functional clustered dendrogram generated using the Euclidean distance showed that the DEGs identified only in acute in vivo NVUs were clustered in cellular proliferation gene ontology functions. The DEGs only identified in chronic in vivo NVUs were clustered in inflammation and immune response, permeability, and adhesion functions. In addition, 1225 DEGs were only identified in the in vivo NVUs but not in vitro BMECs, and these clustered within neuronal and glial functions. One miRNA mmu-miR-3472a was differentially expressed (FC = - 5.98; p = 0.07, FDR corrected) in the serum of Ccm3/Pdcd10+/- when compared to wild type mice, and this was functionally related as a putative target to Cand2 (cullin associated and neddylation dissociated 2), a DEG in acute and chronic lesional NVUs and in vitro BMECs. Our results suggest that the acute model is characterized by cell proliferation, while the chronic model showed inflammatory, adhesion and permeability processes. In addition, we highlight the importance of extra-endothelial structures in CCM disease, and potential role of circulating miRNAs as biomarkers of disease, interacting with DEGs. The extensive DEGs library of each model will serve as a validation tool for potential mechanistic, biomarker, and therapeutic targets.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Central Nervous System Neoplasms/genetics , Disease Progression , Hemangioma, Cavernous, Central Nervous System/genetics , Transcriptome/genetics , Animals , Central Nervous System Neoplasms/pathology , Gene Regulatory Networks/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic
7.
Circ Res ; 123(10): 1143-1151, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30359189

ABSTRACT

RATIONALE: Vascular malformations arise in vessels throughout the entire body. Causative genetic mutations have been identified for many of these diseases; however, little is known about the mutant cell lineage within these malformations. OBJECTIVE: We utilize an inducible mouse model of cerebral cavernous malformations (CCMs) coupled with a multicolor fluorescent reporter to visualize the contribution of mutant endothelial cells (ECs) to the malformation. METHODS AND RESULTS: We combined a Ccm3 mouse model with the confetti fluorescent reporter to simultaneously delete Ccm3 and label the mutant EC with 1 of 4 possible colors. We acquired Z-series confocal images from serial brain sections and created 3-dimensional reconstructions of entire CCMs to visualize mutant ECs during CCM development. We observed a pronounced pattern of CCMs lined with mutant ECs labeled with a single confetti color (n=42). The close 3-dimensional distribution, as determined by the nearest neighbor analysis, of the clonally dominant ECs within the CCM was statistically different than the background confetti labeling of ECs in non-CCM control brain slices as well as a computer simulation ( P<0.001). Many of the small (<100 µm diameter) CCMs consisted, almost exclusively, of the clonally dominant mutant ECs labeled with the same confetti color, whereas the large (>100 µm diameter) CCMs contained both the clonally dominant mutant cells and wild-type ECs. We propose of model of CCM development in which an EC acquires a second somatic mutation, undergoes clonal expansion to initiate CCM formation, and then incorporates neighboring wild-type ECs to increase the size of the malformation. CONCLUSIONS: This is the first study to visualize, with single-cell resolution, the clonal expansion of mutant ECs within CCMs. The incorporation of wild-type ECs into the growing malformation presents another series of cellular events whose elucidation would enhance our understanding of CCMs and may provide novel therapeutic opportunities.


Subject(s)
Clonal Evolution , Endothelial Cells/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Mutation , Animals , Apoptosis Regulatory Proteins , Endothelial Cells/pathology , Hemangioma, Cavernous, Central Nervous System/diagnostic imaging , Hemangioma, Cavernous, Central Nervous System/pathology , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL
8.
J Pathol ; 241(2): 281-293, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27859310

ABSTRACT

Vascular malformations may arise in any of the vascular beds present in the human body. These lesions vary in location, type, and clinical severity of the phenotype. In recent years, the genetic basis of several vascular malformations has been elucidated. This review will consider how the identification of the genetic factors contributing to different vascular malformations, with subsequent functional studies in animal models, has provided a better understanding of these factors that maintain vascular integrity in vascular beds, as well as their role in the pathogenesis of vascular malformations. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Endothelial Cells/metabolism , Genetic Predisposition to Disease , Organisms, Genetically Modified , Transforming Growth Factor beta2/metabolism , Vascular Malformations/pathology , Vascular Malformations/physiopathology , Animals , Humans , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...