Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(17): 8000-8005, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37639696

ABSTRACT

We investigate the electronic properties of a graphene and α-ruthenium trichloride (α-RuCl3) heterostructure using a combination of experimental techniques. α-RuCl3 is a Mott insulator and a Kitaev material. Its combination with graphene has gained increasing attention due to its potential applicability in novel optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy and low-energy electron microscopy, we are able to provide a direct visualization of the massive charge transfer from graphene to α-RuCl3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. A measurement of the spatially resolved work function allows for a direct estimate of the interface dipole between graphene and α-RuCl3. Their strong coupling could lead to new ways of manipulating electronic properties of a two-dimensional heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power optoelectronics devices.

3.
Nature ; 596(7873): 531-535, 2021 08.
Article in English | MEDLINE | ID: mdl-34433948

ABSTRACT

Water is one of the most important, yet least understood, liquids in nature. Many anomalous properties of liquid water originate from its well-connected hydrogen bond network1, including unusually efficient vibrational energy redistribution and relaxation2. An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. Most existing knowledge of vibrational relaxation in water is built upon ultrafast spectroscopy experiments2-7. However, these experiments cannot directly resolve the motion of the atomic positions and require difficult translation of spectral dynamics into hydrogen bond dynamics. Here, we measure the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. We observed a transient hydrogen bond contraction of roughly 0.04 Å on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of approximately 1 picosecond. Molecular dynamics simulations reveal the need to treat the distribution of the shared proton in the hydrogen bond quantum mechanically to capture the structural dynamics on femtosecond timescales. Our experiment and simulations unveil the intermolecular character of the water vibration preceding the relaxation of the OH stretch.

4.
Phys Chem Chem Phys ; 22(19): 10717-10725, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32103223

ABSTRACT

We investigate the effect of pressure, temperature and acidity on the composition of water-rich carbon-bearing fluids under thermodynamic conditions that correspond to the Earth's deep crust and upper mantle. Our first-principles molecular dynamics simulations provide mechanistic insight into the hydration shell of carbon dioxide, bicarbonate and carbonate ions, and into the pathways of the acid/base reactions that convert these carbon species into one another in aqueous solutions. At temperatures of 1000 K and higher, our simulations can sample the chemical equilibrium of these acid/base reactions, thus allowing us to estimate the chemical composition of diluted carbon dioxide and (bi)carbonate ions as a function of acidity and thermodynamic conditions. We find that, especially at the highest temperature, the acidity of the solution is essential to determine the stability domain of CO2vs. HCO3-vs. CO32-.

5.
J Phys Chem Lett ; 10(12): 3447-3452, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31180225

ABSTRACT

Infrared pump-probe spectroscopy provides detailed information about the dynamics of hydrogen-bonded liquids. Due to dissipation of the absorbed pump pulse energy, thermal equilibration dynamics also contributes to the observed signal. Disentangling this contribution from the molecular response remains a challenge. By performing non-equilibrium molecular dynamics simulations of liquid-deuterated methanol, we show that faster molecular vibrational relaxation and slower heat diffusion are decoupled and occur on different length scales. Transient structures of the hydrogen bonding network influence thermal relaxation by affecting thermal diffusivity over a length scale of several nanometers.

6.
Chemistry ; 24(71): 18897-18902, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30252993

ABSTRACT

In biological cells, nuclear pore complexes (NPCs) embedded in cell membranes are capable of controlling the flow of ions, for example, Na+ , K+ , and Ca2+ by responding to stimuli, for example, pH and voltage. Inspired by NPCs, researchers have been endeavoring to develop nanogates to achieve the control of ion transport, but the developed nanogates only have a low factor of change in ion currents due to ON/OFF switching. As such nanopores with high temperature and pH responsivities were developed in this work. According to the experimental results, at a voltage of 3 V, the change in ion currents due to pH change is up to a factor of 170, which is remarkably high compared to other nanogates reported. Quantum chemical (QC) calculation results show that a protonated cytosine molecule (C+ ) and an unprotonated cytosine molecule (C) form three pairs of hydrogen bonds and consequently a nucleobase pair, CC+ , leading to the binding of various strands, assembly of a strand net, and blockage of ion transport. The nanogate developed is capable of responding to temperature change. At a voltage of 3 V, the factor of change in ion currents in response to temperature variation is as high as 110. Further experiments were performed to investigate the influence of the NaCl concentrations and small opening diameters exerted on nanogate performance.

7.
J Chem Theory Comput ; 13(3): 1284-1292, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28112932

ABSTRACT

We introduce a nonequilibrium molecular dynamics simulation approach, based on the generalized Langevin equation, to study vibrational energy relaxation in pump-probe spectroscopy. A colored noise thermostat is used to selectively excite a set of vibrational modes, leaving the other modes nearly unperturbed, to mimic the effect of a monochromatic laser pump. Energy relaxation is probed by analyzing the evolution of the system after excitation in the microcanonical ensemble, thus providing direct information about the energy redistribution paths at the molecular level and their time scale. The method is applied to hydrogen-bonded molecular liquids, specifically deuterated methanol and water, providing a robust picture of energy relaxation at the molecular scale.

8.
J Phys Condens Matter ; 24(10): 104020, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22353772

ABSTRACT

By means of tight-binding atomistic simulations we study a family of native defects in graphene which have recently been detected experimentally. Their formation energy is found to be as large as several electronvolts, consistent with the empirical evidence of high crystalline quality in most graphene samples. Defects, especially if associated with bond reconstructions, induce sizable deformation and stress fields with a spatial distribution closely related to their actual symmetry. The description of such fields proposed here is believed to be useful for the unambiguous characterization of images obtained by electron microscopy. We also argue that they define the basin of mutual interaction between two nearby defects. Finally, we provide evidence that defects differently affect the linear elastic moduli of monolayer graphene. In general, both the Young modulus and the Poisson ratio are decreased, but their dependence upon the defect surface density is remarkably more pronounced for vacancy-like than for number-like defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...