Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7628, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494345

ABSTRACT

The auditory function of the mammalian cochlea relies on two types of mechanosensory hair cells and various non-sensory supporting cells. Recent studies identified the transcription factors INSM1 and IKZF2 as regulators of outer hair cell (OHC) fate. However, the transcriptional regulation of the differentiation of inner hair cells (IHCs) and their associated inner supporting cells (ISCs) has remained enigmatic. Here, we show that the expression of the transcription factor TBX2 is restricted to IHCs and ISCs from the onset of differentiation until adulthood and examine its function using conditional deletion and misexpression approaches in the mouse. We demonstrate that TBX2 acts in prosensory progenitors as a patterning factor by specifying the inner compartment of the sensory epithelium that subsequently gives rise to IHCs and ISCs. Hair cell-specific inactivation or misexpression causes transdifferentiation of hair cells indicating a cell-autonomous function of TBX2 in inducing and maintaining IHC fate.


Subject(s)
Gene Expression Regulation, Developmental , Hair Cells, Auditory, Inner , Mice , Animals , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Outer/metabolism , Cochlea/physiology , Transcription Factors/metabolism , Cell Differentiation/genetics , Organ of Corti/metabolism , Mammals/metabolism
2.
Development ; 149(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-36094016

ABSTRACT

The coordinated development of the mesenchymal and epithelial progenitors of the murine ureter depends on a complex interplay of diverse signaling activities. We have recently shown that epithelial FGFR2 signaling regulates stratification and differentiation of the epithelial compartment by enhancing epithelial Shh expression, and mesenchymal SHH and BMP4 activity. Here, we show that FGFR1 and FGFR2 expression in the mesenchymal primordium impinges on the SHH/BMP4 signaling axis to regulate mesenchymal patterning and differentiation. Mouse embryos with conditional loss of Fgfr1 and Fgfr2 in the ureteric mesenchyme exhibited reduced mesenchymal proliferation and prematurely activated lamina propria formation at the expense of the smooth muscle cell program. They also manifested hydroureter at birth. Molecular profiling detected increased SHH, WNT and retinoic acid signaling, whereas BMP4 signaling in the mesenchyme was reduced. Pharmacological activation of SHH signaling in combination with inhibition of BMP4 signaling recapitulated the cellular changes in explant cultures of wild-type ureters. Additional experiments suggest that mesenchymal FGFR1 and FGFR2 act as a sink for FGF ligands to dampen activation of Shh and BMP receptor gene expression by epithelial FGFR2 signaling.


Subject(s)
Ureter , Animals , Bone Morphogenetic Protein 4/metabolism , Cell Differentiation , Hedgehog Proteins/metabolism , Mesoderm/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Signal Transduction/genetics , Ureter/metabolism
3.
Development ; 149(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35905011

ABSTRACT

Smooth muscle cells (SMCs) are a crucial component of the mesenchymal wall of the ureter, as they account for the efficient removal of the urine from the renal pelvis to the bladder by means of their contractile activity. Here, we show that the zinc-finger transcription factor gene Gata6 is expressed in mesenchymal precursors of ureteric SMCs under the control of BMP4 signaling. Mice with a conditional loss of Gata6 in these precursors exhibit a delayed onset and reduced level of SMC differentiation and peristaltic activity, as well as dilatation of the ureter and renal pelvis (hydroureternephrosis) at birth and at postnatal stages. Molecular profiling revealed a delayed and reduced expression of the myogenic driver gene Myocd, but the activation of signaling pathways and transcription factors previously implicated in activation of the visceral SMC program in the ureter was unchanged. Additional gain-of-function experiments suggest that GATA6 cooperates with FOXF1 in Myocd activation and SMC differentiation, possibly as pioneer and lineage-determining factors, respectively.


Subject(s)
Ureter , Animals , Cell Differentiation/genetics , Mice , Muscle Development , Muscle, Smooth , Myocytes, Smooth Muscle/physiology , Ureter/metabolism
4.
Development ; 149(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35103284

ABSTRACT

The contractile phenotype of smooth muscle cells (SMCs) is transcriptionally controlled by a complex of the DNA-binding protein SRF and the transcriptional co-activator MYOCD. The pathways that activate expression of Myocd and of SMC structural genes in mesenchymal progenitors are diverse, reflecting different intrinsic and extrinsic signaling inputs. Taking the ureter as a model, we analyzed whether Notch signaling, a pathway previously implicated in vascular SMC development, also affects visceral SMC differentiation. We show that mice with a conditional deletion of the unique Notch mediator RBPJ in the undifferentiated ureteric mesenchyme exhibit altered ureter peristalsis with a delayed onset, and decreased contraction frequency and intensity at fetal stages. They also develop hydroureter 2 weeks after birth. Notch signaling is required for precise temporal activation of Myocd expression and, independently, for expression of a group of late SMC structural genes. Based on additional expression analyses, we suggest that a mesenchymal JAG1-NOTCH2/NOTCH3 module regulates visceral SMC differentiation in the ureter in a biphasic and bimodal manner, and that its molecular function differs from that in the vascular system.


Subject(s)
Cell Differentiation , Myocytes, Smooth Muscle/metabolism , Signal Transduction , Ureter/metabolism , Actins/genetics , Actins/metabolism , Animals , Cell Differentiation/drug effects , Diamines/pharmacology , Female , Gene Expression Regulation, Developmental , Immunoglobulin J Recombination Signal Sequence-Binding Protein/deficiency , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Male , Mice , Mice, Knockout , Myocytes, Smooth Muscle/cytology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Receptors, Notch/metabolism , Signal Transduction/drug effects , Thiazoles/pharmacology , Trans-Activators/genetics , Trans-Activators/metabolism , Ureter/cytology , Ureter/growth & development , Viscera/cytology , Viscera/metabolism
5.
Development ; 149(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-35020897

ABSTRACT

The patterned array of basal, intermediate and superficial cells in the urothelium of the mature ureter arises from uncommitted epithelial progenitors of the distal ureteric bud. Urothelial development requires signaling input from surrounding mesenchymal cells, which, in turn, depend on cues from the epithelial primordium to form a layered fibro-muscular wall. Here, we have identified FGFR2 as a crucial component in this reciprocal signaling crosstalk in the murine ureter. Loss of Fgfr2 in the ureteric epithelium led to reduced proliferation, stratification, intermediate and basal cell differentiation in this tissue, and affected cell survival and smooth muscle cell differentiation in the surrounding mesenchyme. Loss of Fgfr2 impacted negatively on epithelial expression of Shh and its mesenchymal effector gene Bmp4. Activation of SHH or BMP4 signaling largely rescued the cellular defects of mutant ureters in explant cultures. Conversely, inhibition of SHH or BMP signaling in wild-type ureters recapitulated the mutant phenotype in a dose-dependent manner. Our study suggests that FGF signals from the mesenchyme enhance, via epithelial FGFR2, the SHH-BMP4 signaling axis to drive urothelial and mesenchymal development in the early ureter.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Hedgehog Proteins/metabolism , Organogenesis , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction , Ureter/metabolism , Animals , Mesoderm/cytology , Mesoderm/metabolism , Mice , Receptor, Fibroblast Growth Factor, Type 2/genetics , Ureter/embryology , Urothelium/cytology , Urothelium/metabolism
6.
Mol Cancer Res ; 18(6): 859-872, 2020 06.
Article in English | MEDLINE | ID: mdl-32161139

ABSTRACT

Tightly regulated activity of the transcription factor MYC is essential for orderly cell proliferation. Upon deregulation, MYC elicits and promotes cancer progression. Proteasomal degradation is an essential element of MYC regulation, initiated by phosphorylation at Serine62 (Ser62) of the MB1 region. Here, we found that Ser62 phosphorylation peaks in mitosis, but that a fraction of nonphosphorylated MYC binds to the microtubules of the mitotic spindle. Consequently, the microtubule-destabilizing drug vincristine decreases wild-type MYC stability, whereas phosphorylation-deficient MYC is more stable, contributing to vincristine resistance and induction of polyploidy. PI3K inhibition attenuates postmitotic MYC formation and augments the cytotoxic effect of vincristine. IMPLICATIONS: The spindle's function as a docking site for MYC during mitosis may constitute a window of specific vulnerability to be exploited for cancer treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Microtubules/metabolism , Mitosis , Neoplasms/pathology , Proto-Oncogene Proteins c-myc/metabolism , Vincristine/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Proliferation , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Tumor Cells, Cultured
7.
J Pathol ; 248(4): 452-463, 2019 08.
Article in English | MEDLINE | ID: mdl-30916783

ABSTRACT

The establishment of the peristaltic machinery of the ureter is precisely controlled to cope with the onset of urine production in the fetal kidney. Retinoic acid (RA) has been identified as a signal that maintains the mesenchymal progenitors of the contractile smooth muscle cells (SMCs), while WNTs, SHH, and BMP4 induce their differentiation. How the activity of the underlying signalling pathways is controlled in time, space, and quantity to activate coordinately the SMC programme is poorly understood. Here, we provide evidence that the Zn-finger transcription factor GATA2 is involved in this crosstalk. In mice, Gata2 is expressed in the undifferentiated ureteric mesenchyme under control of RA signalling. Conditional deletion of Gata2 by a Tbx18cre driver results in hydroureter formation at birth, associated with a loss of differentiated SMCs. Analysis at earlier stages and in explant cultures revealed that SMC differentiation is not abrogated but delayed and that dilated ureters can partially regain peristaltic activity when relieved of urine pressure. Molecular analysis identified increased RA signalling as one factor contributing to the delay in SMC differentiation, possibly caused by reduced direct transcriptional activation of Cyp26a1, which encodes an RA-degrading enzyme. Our study identified GATA2 as a feedback inhibitor of RA signalling important for precise onset of ureteric SMC differentiation, and suggests that in a subset of cases of human congenital ureter dilatations, temporary relief of urine pressure may ameliorate the differentiation status of the SMC coat. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Cell Differentiation , GATA2 Transcription Factor/deficiency , Mesoderm/embryology , Myocytes, Smooth Muscle/physiology , Ureter/embryology , Ureteral Diseases/embryology , Animals , Biomarkers/metabolism , Female , GATA2 Transcription Factor/genetics , Male , Mesoderm/metabolism , Mice , Signal Transduction , Tretinoin/metabolism , Ureter/abnormalities , Ureter/metabolism , Ureteral Diseases/congenital , Ureteral Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...