Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 296: 100127, 2021.
Article in English | MEDLINE | ID: mdl-33257321

ABSTRACT

DEC-205 (CD205), a member of the macrophage mannose receptor protein family, is the prototypic endocytic receptor of dendritic cells, whose ligands include phosphorothioated cytosine-guanosine oligonucleotides, a motif often seen in bacterial or viral DNA. However, despite growing biological and clinical significance, little is known about the structural arrangement of this receptor or any of its family members. Here, we describe the 3.2 Å cryo-EM structure of human DEC-205, thereby illuminating the structure of the mannose receptor protein family. The DEC-205 monomer forms a compact structure comprising two intercalated rings of C-type lectin-like domains, where the N-terminal cysteine-rich and fibronectin domains reside at the central intersection. We establish a pH-dependent oligomerization pathway forming tetrameric DEC-205 using solution-based techniques and ultimately solved the 4.9 Å cryo-EM structure of the DEC-205 tetramer to identify the unfurling of the second lectin ring which enables tetramer formation. Furthermore, we suggest the relevance of this oligomerization pathway within a cellular setting, whereby cytosine-guanosine binding appeared to disrupt this cell-surface oligomer. Accordingly, we provide insight into the structure and oligomeric assembly of the DEC-205 receptor.


Subject(s)
Antigens, CD/chemistry , Antigens, CD/metabolism , Cryoelectron Microscopy/methods , Fibronectins/metabolism , Lectins, C-Type/metabolism , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Humans , Lectins, C-Type/chemistry , Ligands , Protein Conformation
2.
J Biol Chem ; 294(33): 12534-12546, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31253644

ABSTRACT

Nectin and nectin-like (Necl) adhesion molecules are broadly overexpressed in a wide range of cancers. By binding to these adhesion molecules, the immunoreceptors DNAX accessory molecule-1 (DNAM-1), CD96 molecule (CD96), and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) play a crucial role in regulating the anticancer activities of immune effector cells. However, within this axis, it remains unclear how DNAM-1 recognizes its cognate ligands. Here, we determined the structure of human DNAM-1 in complex with nectin-like protein-5 (Necl-5) at 2.8 Å resolution. Unexpectedly, we found that the two extracellular domains (D1-D2) of DNAM-1 adopt an unconventional "collapsed" arrangement that is markedly distinct from those in other immunoglobulin-based immunoreceptors. The DNAM-1/Necl-5 interaction was underpinned by conserved lock-and-key motifs located within their respective D1 domains, but also included a distinct interface derived from DNAM-1 D2. Mutation of the signature DNAM-1 "key" motif within the D1 domain attenuated Necl-5 binding and natural killer cell-mediated cytotoxicity. Altogether, our results have implications for understanding the binding mode of an immune receptor family that is emerging as a viable candidate for cancer immunotherapy.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Immunity, Cellular , Killer Cells, Natural , Receptors, Virus , Amino Acid Motifs , Antigens, Differentiation, T-Lymphocyte/chemistry , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , HEK293 Cells , Humans , K562 Cells , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mutation , Protein Binding , Protein Domains , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/immunology , Receptors, Virus/metabolism
3.
Structure ; 27(2): 219-228.e3, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30528596

ABSTRACT

CD96, DNAM-1, and TIGIT constitute a group of immunoglobulin superfamily receptors that are key regulators of tumor immune surveillance. Within this axis, CD96 recognizes the adhesion molecule nectin-like protein-5 (necl-5), although the molecular basis underpinning this interaction remains unclear. We show that the first immunoglobulin domain (D1) of CD96 is sufficient to mediate a robust interaction with necl-5, but not the DNAM-1 and TIGIT ligand, nectin-2. The crystal structure of CD96-D1 bound to the necl-5 ectodomain revealed that CD96 recognized necl-5 D1 via a conserved "lock-and-key" interaction observed across TIGIT:necl complexes. Specific necl-5 recognition was underpinned by a novel structural motif within CD96, namely an "ancillary key". Mutational analysis showed that this specific residue was critical for necl-5 binding, while simultaneously providing insights into the unique ligand specificity of CD96.


Subject(s)
Antigens, CD/chemistry , Antigens, CD/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Animals , Binding Sites , Cell Line , Crystallography, X-Ray , HEK293 Cells , Humans , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Domains , Protein Structure, Secondary , Sf9 Cells
4.
J Biol Chem ; 292(27): 11413-11422, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28515320

ABSTRACT

T cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed on the surface of natural killer (NK) cells. TIGIT recognizes nectin and nectin-like adhesion molecules and thus plays a critical role in the innate immune response to malignant transformation. Although the TIGIT nectin-like protein-5 (necl-5) interaction is well understood, how TIGIT engages nectin-2, a receptor that is broadly over-expressed in breast and ovarian cancer, remains unknown. Here, we show that TIGIT bound to the immunoglobulin domain of nectin-2 that is most distal from the membrane with an affinity of 6 µm, which was moderately lower than the affinity observed for the TIGIT/necl-5 interaction (3.2 µm). The TIGIT/nectin-2 binding disrupted pre-assembled nectin-2 oligomers, suggesting that receptor-ligand and ligand-ligand associations are mutually exclusive events. Indeed, the crystal structure of TIGIT bound to the first immunoglobulin domain of nectin-2 indicated that the receptor and ligand dock using the same molecular surface and a conserved "lock and key" binding motifs previously observed to mediate nectin/nectin homotypic interactions as well as TIGIT/necl-5 recognition. Using a mutagenesis approach, we dissected the energetic basis for the TIGIT/nectin-2 interaction and revealed that an "aromatic key" of nectin-2 is critical for this interaction, whereas variations in the lock were tolerated. Moreover, we found that the C-C' loop of the ligand dictates the TIGIT binding hierarchy. Altogether, these findings broaden our understanding of nectin/nectin receptor interactions and have implications for better understanding the molecular basis for autoimmune disease and cancer.


Subject(s)
Cell Adhesion Molecules/chemistry , Receptors, Immunologic/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Crystallography, X-Ray , Humans , Mutagenesis , Nectins , Protein Domains , Protein Structure, Quaternary , Protein Structure, Secondary , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
5.
J Biol Chem ; 291(36): 18740-52, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27385590

ABSTRACT

Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 µm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 µm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated ß2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C ß4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules.


Subject(s)
Histocompatibility Antigen H-2D/chemistry , Killer Cells, Natural/chemistry , NK Cell Lectin-Like Receptor Subfamily A/chemistry , Animals , Crystallography, X-Ray , H-2 Antigens/chemistry , H-2 Antigens/genetics , H-2 Antigens/immunology , Histocompatibility Antigen H-2D/genetics , Histocompatibility Antigen H-2D/immunology , Killer Cells, Natural/immunology , Mice , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/immunology , Protein Domains , Protein Structure, Quaternary
6.
J Biol Chem ; 289(34): 23753-63, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-24982419

ABSTRACT

The ability of CMVs to evade the immune system of the host is dependent on the expression of a wide array of glycoproteins, many of which interfere with natural killer cell function. In murine CMV, two large protein families mediate this immune-evasive function. Although it is established that the m145 family members mimic the structure of MHC-I molecules, the structure of the m02 family remains unknown. The most extensively studied m02 family member is m04, a glycoprotein that escorts newly assembled MHC-I molecules to the cell surface, presumably to avoid "missing self" recognition. Here we report the crystal structure of the m04 ectodomain, thereby providing insight into this large immunoevasin family. m04 adopted a ß-sandwich immunoglobulin variable (Ig-V)-like fold, despite sharing very little sequence identity with the Ig-V superfamily. In addition to the Ig-V core, m04 possesses several unique structural features that included an unusual ß-strand topology, a number of extended loops and a prominent α-helix. The m04 interior was packed by a myriad of hydrophobic residues that form distinct clusters around two conserved tryptophan residues. This hydrophobic core was well conserved throughout the m02 family, thereby indicating that murine CMV encodes a number of Ig-V-like molecules. We show that m04 binds a range of MHC-I molecules with low affinity in a peptide-independent manner. Accordingly, the structure of m04, which represents the first example of an murine CMV encoded Ig-V fold, provides a basis for understanding the structure and function of this enigmatic and large family of immunoevasins.


Subject(s)
Carrier Proteins/chemistry , Glycoproteins/chemistry , Immune Evasion , Viral Proteins/chemistry , Amino Acid Sequence , Carrier Proteins/metabolism , Crystallization , Glycoproteins/metabolism , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid , Viral Proteins/metabolism
7.
Nat Immunol ; 14(7): 699-705, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23666294

ABSTRACT

Activating and inhibitory receptors on natural killer (NK) cells have a crucial role in innate immunity, although the basis of the engagement of activating NK cell receptors is unclear. The activating receptor Ly49H confers resistance to infection with murine cytomegalovirus by binding to the 'immunoevasin' m157. We found that m157 bound to the helical stalk of Ly49H, whereby two m157 monomers engaged the Ly49H dimer. The helical stalks of Ly49H lay centrally across the m157 platform, whereas its lectin domain was not required for recognition. Instead, m157 targeted an 'aromatic peg motif' present in stalks of both activating and inhibitory receptors of the Ly49 family, and substitution of this motif abrogated binding. Furthermore, ligation of m157 to Ly49H or Ly49C resulted in intracellular signaling. Accordingly, m157 has evolved to 'tackle the legs' of a family of NK cell receptors.


Subject(s)
Herpesviridae Infections/immunology , Histocompatibility Antigens Class I/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Muromegalovirus/immunology , NK Cell Lectin-Like Receptor Subfamily A/immunology , Amino Acid Motifs/immunology , Amino Acid Sequence , Animals , Crystallography, X-Ray , Female , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Sequence Data , Signal Transduction/immunology , Specific Pathogen-Free Organisms , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...