Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 43(19): 1431-1444, 2024 May.
Article in English | MEDLINE | ID: mdl-38485737

ABSTRACT

MET amplification/mutations are important targetable oncogenic drivers in NSCLC, however, acquired resistance is inevitable and the majority of patients with targetable MET alterations fail to respond to MET tyrosine kinase inhibitors (TKIs). Furthermore, MET amplification is among the most common mediators of TKI resistance. As such, novel therapies to target MET pathway and overcome MET TKI resistance are clearly needed. Here we show that the epithelial-mesenchymal transition (EMT) transcription factor, TWIST1 is a key downstream mediator of HGF/MET induced resistance through suppression of p27 and targeting TWIST1 can overcome resistance. We found that TWIST1 is overexpressed at the time of TKI resistance in multiple MET-dependent TKI acquired resistance PDX models. We have shown for the first time that MET directly stabilized the TWIST protein leading to TKI resistance and that TWIST1 was required for MET-driven lung tumorigenesis as well as could induce MET TKI resistance when overexpressed. TWIST1 mediated MET TKI resistance through suppression of p27 expression and genetic or pharmacologic inhibition of TWIST1 overcame TKI resistance in vitro and in vivo. Our findings suggest that targeting TWIST1 may be an effective therapeutic strategy to overcome resistance in MET-driven NSCLC as well as in other oncogene driven subtypes in which MET amplification is the resistance mechanism.


Subject(s)
Drug Resistance, Neoplasm , Hepatocyte Growth Factor , Lung Neoplasms , Nuclear Proteins , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Twist-Related Protein 1 , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Animals , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Xenograft Model Antitumor Assays
2.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33351788

ABSTRACT

Human lung adenocarcinoma (LUAD) in current or former smokers exhibits a high tumor mutational burden (TMB) and distinct mutational signatures. Syngeneic mouse models of clinically relevant smoking-related LUAD are lacking. We established and characterized a tobacco-associated, transplantable murine LUAD cell line, designated FVBW-17, from a LUAD induced by the tobacco carcinogen 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone in the FVB/N mouse strain. Whole-exome sequencing of FVBW-17 cells identified tobacco-associated KrasG12D and Trp53 mutations and a similar mutation profile to that of classic alkylating agents with a TMB greater than 500. FVBW-17 cells transplanted subcutaneously, via tail vein, and orthotopically generated tumors that were histologically similar to human LUAD in FVB/N mice. FVBW-17 tumors expressed programmed death ligand 1 (PD-L1), were infiltrated with CD8+ T cells, and were responsive to anti-PD-L1 therapy. FVBW-17 cells were also engineered to express green fluorescent protein and luciferase to facilitate detection and quantification of tumor growth. Distant metastases to lung, spleen, liver, and kidney were observed from subcutaneously transplanted tumors. This potentially novel cell line is a robust representation of human smoking-related LUAD biology and provides a much needed preclinical model in which to test promising new agents and combinations, including immune-based therapies.


Subject(s)
Adenocarcinoma of Lung/chemically induced , B7-H1 Antigen/metabolism , Carcinogens/toxicity , Lung Neoplasms/chemically induced , Nitrosamines/toxicity , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Animals , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Male , Mice , Mutation , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Smoke/adverse effects , Nicotiana/toxicity , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...