Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Immunity ; 57(6): 1260-1273.e7, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38744292

ABSTRACT

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.


Subject(s)
Acetylcholine , Intestinal Mucosa , Animals , Acetylcholine/metabolism , Mice , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Choline O-Acetyltransferase/metabolism , Interleukin-13/metabolism , Interleukin-13/immunology , Mice, Knockout , Mice, Inbred C57BL , Helminthiasis/immunology , Helminthiasis/parasitology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Immunity, Innate , Nematospiroides dubius/immunology , Tuft Cells
2.
Mol Cell Probes ; 73: 101946, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097144

ABSTRACT

Haemonchus contortus is a parasitic haematophagous nematode that primarily affects small ruminants and causes significant economic loss to the global livestock industry. Treatment of haemonchosis typically relies on broad-spectrum anthelmintics, resistance to which is an important cause of treatment failure. Resistance to levamisole remains less widespread than to other major anthelmintic classes, prompting the need for more effective and accurate surveillance to maintain its efficacy. Loop-primer endonuclease cleavage loop-mediated isothermal amplification (LEC-LAMP) is a recently developed diagnostic method that facilitates multiplex target detection with single nucleotide polymorphism (SNP) specificity and portable onsite testing. In this study, we designed a new LEC-LAMP assay and applied it to detect the levamisole resistance marker S168T in H. contortus. We explored multiplexing probes for both the resistant S168T and the susceptible S168 alleles in a single-tube assay. We then included a generic probe to detect the acr-8 gene in the multiplex assay, which could facilitate the quantification of both resistance markers and overall genetic material from H. contortus in a single step. Our results showed promising application of these technologies, demonstrating a proof-of-concept assay which is amenable to detection of resistance alleles within the parasite population, with the potential for multiplex detection, and point-of-care application enabled by lateral flow end-point detection. However, further optimisation and validation is necessary.


Subject(s)
Anthelmintics , Haemonchus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Animals , Levamisole/pharmacology , Haemonchus/genetics , Drug Resistance/genetics , Anthelmintics/pharmacology , Anthelmintics/therapeutic use
3.
Cells ; 12(20)2023 10 18.
Article in English | MEDLINE | ID: mdl-37887321

ABSTRACT

Tuft cells have recently emerged as the focus of intense interest following the discovery of their chemosensory role in the intestinal tract, and their ability to activate Type 2 immune responses to helminth parasites. Moreover, they populate a wide range of mucosal tissues and are intimately connected to immune and neuronal cells, either directly or through the release of pharmacologically active mediators. They are now recognised to fulfil both homeostatic roles, in metabolism and tissue integrity, as well as acting as the first sensors of parasite infection, immunity to which is lost in their absence. In this review we focus primarily on the importance of tuft cells in the intestinal niche, but also link to their more generalised physiological role and discuss their potential as targets for the treatment of gastrointestinal disorders.


Subject(s)
Helminths , Parasites , Parasitic Diseases , Animals , Intestinal Mucosa/metabolism , Parasitic Diseases/metabolism , Immunity
4.
Int J Parasitol ; 53(8): 393-403, 2023 07.
Article in English | MEDLINE | ID: mdl-36931423

ABSTRACT

How parasites develop and survive, and how they stimulate or modulate host immune responses are important in understanding disease pathology and for the design of new control strategies. Microarray analysis and bulk RNA sequencing have provided a wealth of data on gene expression as parasites develop through different life-cycle stages and on host cell responses to infection. These techniques have enabled gene expression in the whole organism or host tissue to be detailed, but do not take account of the heterogeneity between cells of different types or developmental stages, nor the spatial organisation of these cells. Single-cell RNA-seq (scRNA-seq) adds a new dimension to studying parasite biology and host immunity by enabling gene profiling at the individual cell level. Here we review the application of scRNA-seq to establish gene expression cell atlases for multicellular helminths and to explore the expansion and molecular profile of individual host cell types involved in parasite immunity and tissue repair. Studying host-parasite interactions in vivo is challenging and we conclude this review by briefly discussing the applications of organoids (stem-cell derived mini-tissues) to examine host-parasite interactions at the local level, and as a potential system to study parasite development in vitro. Organoid technology and its applications have developed rapidly, and the elegant studies performed to date support the use of organoids as an alternative in vitro system for research on helminth parasites.


Subject(s)
Helminths , Host-Parasite Interactions , Animals , Host-Parasite Interactions/genetics , Helminths/physiology , Base Sequence , Life Cycle Stages
5.
J Extracell Vesicles ; 12(1): e12298, 2023 01.
Article in English | MEDLINE | ID: mdl-36604533

ABSTRACT

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Subject(s)
Extracellular Vesicles , Helminths , Animals , Humans , Extracellular Vesicles/physiology , Reproducibility of Results , Mammals
6.
Cell Rep ; 41(3): 111522, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261007

ABSTRACT

Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.


Subject(s)
Anthelmintics , Ivermectin , Ivermectin/pharmacology , Levamisole , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Drug Resistance/genetics , Benzimidazoles , Genomics , Transcription Factors
7.
Article in English | MEDLINE | ID: mdl-35970104

ABSTRACT

Haemonchus contortus is a haematophagous parasitic nematode that infects small ruminants and causes significant animal health concerns and economic losses within the livestock industry on a global scale. Treatment primarily depends on broad-spectrum anthelmintics, however, resistance is established or rapidly emerging against all major drug classes. Levamisole (LEV) remains an important treatment option for parasite control, as resistance to LEV is less prevalent than to members of other major classes of anthelmintics. LEV is an acetylcholine receptor (AChR) agonist that, when bound, results in paralysis of the worm. Numerous studies implicated the AChR sub-unit, ACR-8, in LEV sensitivity and in particular, the presence of a truncated acr-8 transcript or a deletion in the acr-8 locus in some resistant isolates. Recently, a single non-synonymous SNP in acr-8 conferring a serine-to-threonine substitution (S168T) was identified that was strongly associated with LEV resistance. Here, we investigate the role of genetic variation at the acr-8 locus in a controlled genetic cross between the LEV susceptible MHco3(ISE) and LEV resistant MHco18(UGA2004) isolates of H. contortus. Using single worm PCR assays, we found that the presence of S168T was strongly associated with LEV resistance in the parental isolates and F3 progeny of the genetic cross surviving LEV treatment. We developed and optimised an allele-specific PCR assay for the detection of S168T and validated the assay using laboratory isolates and field samples that were phenotyped for LEV resistance. In the LEV-resistant field population, a high proportion (>75%) of L3 encoded the S168T variant, whereas the variant was absent in the susceptible isolates studied. These data further support the potential role of acr-8 S168T in LEV resistance, with the allele-specific PCR providing an important step towards establishing a sensitive molecular diagnostic test for LEV resistance.


Subject(s)
Anthelmintics , Haemonchiasis , Haemonchus , Animals , Levamisole/pharmacology , Drug Resistance/genetics , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Receptors, Cholinergic/genetics , Haemonchiasis/drug therapy , Haemonchiasis/veterinary , Haemonchiasis/parasitology
8.
PLoS Pathog ; 18(6): e1010545, 2022 06.
Article in English | MEDLINE | ID: mdl-35696434

ABSTRACT

The antiparasitic drug ivermectin plays an essential role in human and animal health globally. However, ivermectin resistance is widespread in veterinary helminths and there are growing concerns of sub-optimal responses to treatment in related helminths of humans. Despite decades of research, the genetic mechanisms underlying ivermectin resistance are poorly understood in parasitic helminths. This reflects significant uncertainty regarding the mode of action of ivermectin in parasitic helminths, and the genetic complexity of these organisms; parasitic helminths have large, rapidly evolving genomes and differences in evolutionary history and genetic background can confound comparisons between resistant and susceptible populations. We undertook a controlled genetic cross of a multi-drug resistant and a susceptible reference isolate of Haemonchus contortus, an economically important gastrointestinal nematode of sheep, and ivermectin-selected the F2 population for comparison with an untreated F2 control. RNA-seq analyses of male and female adults of all populations identified high transcriptomic differentiation between parental isolates, which was significantly reduced in the F2, allowing differences associated specifically with ivermectin resistance to be identified. In all resistant populations, there was constitutive upregulation of a single gene, HCON_00155390:cky-1, a putative pharyngeal-expressed transcription factor, in a narrow locus on chromosome V previously shown to be under ivermectin selection. In addition, we detected sex-specific differences in gene expression between resistant and susceptible populations, including constitutive upregulation of a P-glycoprotein, HCON_00162780:pgp-11, in resistant males only. After ivermectin selection, we identified differential expression of genes with roles in neuronal function and chloride homeostasis, which is consistent with an adaptive response to ivermectin-induced hyperpolarisation of neuromuscular cells. Overall, we show the utility of a genetic cross to identify differences in gene expression that are specific to ivermectin selection and provide a framework to better understand ivermectin resistance and response to treatment in parasitic helminths.


Subject(s)
Anthelmintics , Haemonchus , Nematoda , Animals , Anthelmintics/pharmacology , Chlorides/metabolism , Chlorides/pharmacology , Drug Resistance/genetics , Female , Homeostasis , Ivermectin/metabolism , Ivermectin/pharmacology , Ivermectin/therapeutic use , Male , Nematoda/genetics , Neuronal Plasticity , Sheep/genetics , Transcriptome
9.
Front Immunol ; 12: 781108, 2021.
Article in English | MEDLINE | ID: mdl-34880874

ABSTRACT

Helminth parasite infections of humans and livestock are a global health and economic problem. Resistance of helminths to current drug treatment is an increasing problem and alternative control approaches, including vaccines, are needed. Effective vaccine design requires knowledge of host immune mechanisms and how these are stimulated. Mouse models of helminth infection indicate that tuft cells, an unusual type of epithelial cell, may 'sense' infection in the small intestine and trigger a type 2 immune response. Currently nothing is known of tuft cells in immunity in other host species and in other compartments of the gastrointestinal (GI) tract. Here we address this gap and use immunohistochemistry and single cell RNA-sequencing to detail the presence and gene expression profile of tuft cells in sheep following nematode infections. We identify and characterize tuft cells in the ovine abomasum (true stomach of ruminants) and show that they increase significantly in number following infection with the globally important nematodes Teladorsagia circumcincta and Haemonchus contortus. Ovine abomasal tuft cells show enriched expression of tuft cell markers POU2F3, GFI1B, TRPM5 and genes involved in signaling and inflammatory pathways. However succinate receptor SUCNR1 and free fatty acid receptor FFAR3, proposed as 'sensing' receptors in murine tuft cells, are not expressed, and instead ovine tuft cells are enriched for taste receptor TAS2R16 and mechanosensory receptor ADGRG6. We also identify tuft cell sub-clusters at potentially different stages of maturation, suggesting a dynamic process not apparent from mouse models of infection. Our findings reveal a tuft cell response to economically important parasite infections and show that while tuft cell effector functions have been retained during mammalian evolution, receptor specificity has diverged. Our data advance knowledge of host-parasite interactions in the GI mucosa and identify receptors that may potentiate type 2 immunity for optimized control of parasitic nematodes.


Subject(s)
Epithelial Cells/immunology , Intestinal Diseases, Parasitic/immunology , Nematode Infections/immunology , Sheep Diseases/immunology , Sheep Diseases/parasitology , Animals , Biological Evolution , Sheep
10.
Commun Biol ; 3(1): 656, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168940

ABSTRACT

Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.


Subject(s)
Genome, Helminth/genetics , Haemonchus/genetics , Models, Biological , Transcriptome/genetics , Animals , Caenorhabditis elegans/genetics , Chromosomes/genetics , Female , Genomics , Haemonchiasis/parasitology , Haemonchus/metabolism , Haemonchus/physiology , Humans , Intestinal Diseases, Parasitic/parasitology , Life Cycle Stages/genetics , Male
11.
Parasitology ; 147(8): 855-864, 2020 07.
Article in English | MEDLINE | ID: mdl-31843030

ABSTRACT

Small RNAs are important regulators of gene expression. They were first identified in Caenorhabditis elegans, but it is now apparent that the main small RNA silencing pathways are functionally conserved across diverse organisms. Availability of genome data for an increasing number of parasitic nematodes has enabled bioinformatic identification of small RNA sequences. Expression of these in different lifecycle stages is revealed by small RNA sequencing and microarray analysis. In this review we describe what is known of the three main small RNA classes in parasitic nematodes - microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) - and their proposed functions. miRNAs regulate development in C. elegans and the temporal expression of parasitic nematode miRNAs suggest modulation of target gene levels as parasites develop within the host. miRNAs are also present in extracellular vesicles released by nematodes in vitro, and in plasma from infected hosts, suggesting potential regulation of host gene expression. Roles of piRNAs and siRNAs in suppressing target genes, including transposable elements, are also reviewed. Recent successes in RNAi-mediated gene silencing, and application of small RNA inhibitors and mimics will continue to advance understanding of small RNA functions within the parasite and at the host-parasite interface.


Subject(s)
Extracellular Vesicles/metabolism , MicroRNAs , Nematoda , RNA, Small Interfering , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Gene Expression Regulation , Gene Silencing , MicroRNAs/genetics , MicroRNAs/metabolism , Nematoda/genetics , Nematoda/metabolism , Nematoda/parasitology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism
12.
Sci Rep ; 9(1): 17594, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772378

ABSTRACT

Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.


Subject(s)
Haemonchus/genetics , MicroRNAs/biosynthesis , RNA, Helminth/biosynthesis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cholestenes/pharmacology , Female , Gene Deletion , Gene Expression Regulation, Developmental/drug effects , Gene Ontology , Haemonchus/drug effects , Haemonchus/growth & development , Larva , Male , MicroRNAs/genetics , RNA, Helminth/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Insulin/genetics , Species Specificity
13.
Front Genet ; 10: 826, 2019.
Article in English | MEDLINE | ID: mdl-31616465

ABSTRACT

Whole-genome sequencing is being rapidly applied to the study of helminth genomes, including de novo genome assembly, population genetics, and diagnostic applications. Although late-stage juvenile and adult parasites typically produce sufficient DNA for molecular analyses, these parasitic stages are almost always inaccessible in the live host; immature life stages found in the environment for which samples can be collected non-invasively offer a potential alternative; however, these samples typically yield very low quantities of DNA, can be environmentally resistant, and are susceptible to contamination, often from bacterial or host DNA. Here, we have tested five low-input DNA extraction protocols together with a low-input sequencing library protocol to assess the feasibility of whole-genome sequencing of individual immature helminth samples. These approaches do not use whole-genome amplification, a common but costly approach to increase the yield of low-input samples. We first tested individual parasites from two species spotted onto FTA cards-egg and L1 stages of Haemonchus contortus and miracidia of Schistosoma mansoni-before further testing on an additional five species-Ancylostoma caninum, Ascaridia dissimilis, Dirofilaria immitis, Strongyloides stercoralis, and Trichuris muris-with an optimal protocol. A sixth species-Dracunculus medinensis-was included for comparison. Whole-genome sequencing followed by analyses to determine the proportion of on- and off-target mapping revealed successful sample preparations for six of the eight species tested with variation both between species and between different life stages from some species described. These results demonstrate the feasibility of whole-genome sequencing of individual parasites, and highlight a new avenue toward generating sensitive, specific, and information-rich data for the diagnosis and surveillance of helminths.

14.
Article in English | MEDLINE | ID: mdl-31622822

ABSTRACT

Recent reports of monepantel (MPTL) resistance in UK field isolates of Teladorsagia circumcincta has highlighted the need for a better understanding of the mechanism of MPTL-resistance in order to preserve its anthelmintic efficacy in this economically important species. Nine discrete populations of T. circumcincta were genotypically characterised; three MPTL-susceptible isolates, three experimentally selected MPTL-resistant strains and three field derived populations. Full-length Tci-mptl-1 gene sequences were generated and comparisons between the MPTL-susceptible isolates, MPTL-resistant strains and one field isolate, showed that different putative MPTL-resistance conferring mutations were present in different resistant isolates. Truncated forms of the Tci-mptl-1 gene were also observed. The genetic variability of individual larvae, within and between populations, was examined using microsatellite analyses at 10 'neutral' loci (presumed to be unaffected by MPTL). Results confirmed that there was little background genetic variation between the populations, global FST <0.038. Polymorphisms present in exons 7 and 8 of Tci-mptl-1 enabled genotyping of individual larvae. A reduction in the number of genotypes was observed in all MPTL-resistant strains compared to the MPTL-susceptible strains that they were derived from, suggesting there was purifying selection at Tci-mptl-1 as a result of MPTL-treatment. The potential link between benzimidazole (BZ)-resistance and MPTL-resistance was examined by screening individual larvae for the presence of three SNPs associated with BZ-resistance in the ß-tubulin isotype-1 gene. The majority of larvae were BZ-susceptible homozygotes at positions 167 and 198. Increased heterozygosity at position 200 was observed in the MPTL-resistant strains compared to their respective MPTL-susceptible population. There was no decrease in the occurrence of BZ-resistant genotypes in larvae from each population. These differences, in light of the purifying selection at this locus in all MPTL-resistant isolates, suggests that Tci-mptl-1 confers MPTL-resistance in T. circumcincta, as in Haemonchus contortus, but that different mutations in Tci-mptl-1 can confer resistance in different populations.


Subject(s)
Aminoacetonitrile/analogs & derivatives , Anthelmintics/pharmacology , Drug Resistance/genetics , Loss of Function Mutation/physiology , Trichostrongyloidea/drug effects , Aminoacetonitrile/pharmacology , Animals , DNA, Helminth/chemistry , DNA, Helminth/isolation & purification , Genotype , High-Throughput Nucleotide Sequencing/veterinary , Male , Microsatellite Repeats , Scotland , Sequence Alignment , Sheep , Sheep Diseases/drug therapy , Sheep Diseases/parasitology , Trichostrongyloidea/classification , Trichostrongyloidea/genetics , Trichostrongyloidiasis/drug therapy , Trichostrongyloidiasis/parasitology , Trichostrongyloidiasis/veterinary , United Kingdom
15.
Int J Parasitol ; 49(11): 847-858, 2019 10.
Article in English | MEDLINE | ID: mdl-31525371

ABSTRACT

Differential expression analysis between parasitic nematode strains is commonly used to implicate candidate genes in anthelmintic resistance or other biological functions. We have tested the hypothesis that the high genetic diversity of an organism such as Haemonchus contortus could complicate such analyses. First, we investigated the extent to which sequence polymorphism affects the reliability of differential expression analysis between the genetically divergent H. contortus strains MHco3(ISE), MHco4(WRS) and MHco10(CAVR). Using triplicates of 20 adult female worms from each population isolated under parallel experimental conditions, we found that high rates of sequence polymorphism in RNAseq reads were associated with lower efficiency read mapping to gene models under default TopHat2 parameters, leading to biased estimates of inter-strain differential expression. We then showed it is possible to largely compensate for this bias by optimising the read mapping single nucleotide polymorphism (SNP) allowance and filtering out genes with particularly high single nucleotide polymorphism rates. Once the sequence polymorphism biases were removed, we then assessed the genuine transcriptional diversity between the strains, finding ≥824 differentially expressed genes across all three pairwise strain comparisons. This high level of inter-strain transcriptional diversity not only suggests substantive inter-strain phenotypic variation but also highlights the difficulty in reliably associating differential expression of specific genes with phenotypic differences. To provide a practical example, we analysed two gene families of potential relevance to ivermectin drug resistance; the ABC transporters and the ligand-gated ion channels (LGICs). Over half of genes identified as differentially expressed using default TopHat2 parameters were shown to be an artifact of sequence polymorphism differences. This work illustrates the need to account for sequence polymorphism in differential expression analysis. It also demonstrates that a large number of genuine transcriptional differences can occur between H. contortus strains and these must be considered before associating the differential expression of specific genes with phenotypic differences between strains.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Profiling/standards , Genetic Variation , Haemonchus/genetics , Animals , Anthelmintics/pharmacology , Chromosome Mapping/methods , Chromosome Mapping/standards , Computational Biology/methods , Computational Biology/standards , Drug Resistance , Haemonchus/drug effects , Ivermectin/pharmacology , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/standards
16.
Article in English | MEDLINE | ID: mdl-31125837

ABSTRACT

Anthelmintic resistance is a threat to global food security. In order to alleviate the selection pressure for resistance and maintain drug efficacy, management strategies increasingly aim to preserve a proportion of the parasite population in 'refugia', unexposed to treatment. While persuasive in its logic, and widely advocated as best practice, evidence for the ability of refugia-based approaches to slow the development of drug resistance in parasitic helminths is currently limited. Moreover, the conditions needed for refugia to work, or how transferable those are between parasite-host systems, are not known. This review, born of an international workshop, seeks to deconstruct the concept of refugia and examine its assumptions and applicability in different situations. We conclude that factors potentially important to refugia, such as the fitness cost of drug resistance, the degree of mixing between parasite sub-populations selected through treatment or not, and the impact of parasite life-history, genetics and environment on the population dynamics of resistance, vary widely between systems. The success of attempts to generate refugia to limit anthelmintic drug resistance are therefore likely to be highly dependent on the system in hand. Additional research is needed on the concept of refugia and the underlying principles for its application across systems, as well as empirical studies within systems that prove and optimise its usefulness.


Subject(s)
Anthelmintics/pharmacology , Drug Resistance , Helminths/drug effects , Animals , Helminthiasis/parasitology , Helminths/genetics , Helminths/growth & development , Humans , Refugium
17.
BMC Genomics ; 20(1): 218, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30876405

ABSTRACT

BACKGROUND: Infections with helminths cause an enormous disease burden in billions of animals and plants worldwide. Large scale use of anthelmintics has driven the evolution of resistance in a number of species that infect livestock and companion animals, and there are growing concerns regarding the reduced efficacy in some human-infective helminths. Understanding the mechanisms by which resistance evolves is the focus of increasing interest; robust genetic analysis of helminths is challenging, and although many candidate genes have been proposed, the genetic basis of resistance remains poorly resolved. RESULTS: Here, we present a genome-wide analysis of two genetic crosses between ivermectin resistant and sensitive isolates of the parasitic nematode Haemonchus contortus, an economically important gastrointestinal parasite of small ruminants and a model for anthelmintic research. Whole genome sequencing of parental populations, and key stages throughout the crosses, identified extensive genomic diversity that differentiates populations, but after backcrossing and selection, a single genomic quantitative trait locus (QTL) localised on chromosome V was revealed to be associated with ivermectin resistance. This QTL was common between the two geographically and genetically divergent resistant populations and did not include any leading candidate genes, suggestive of a previously uncharacterised mechanism and/or driver of resistance. Despite limited resolution due to low recombination in this region, population genetic analyses and novel evolutionary models supported strong selection at this QTL, driven by at least partial dominance of the resistant allele, and that large resistance-associated haplotype blocks were enriched in response to selection. CONCLUSIONS: We have described the genetic architecture and mode of ivermectin selection, revealing a major genomic locus associated with ivermectin resistance, the most conclusive evidence to date in any parasitic nematode. This study highlights a novel genome-wide approach to the analysis of a genetic cross in non-model organisms with extreme genetic diversity, and the importance of a high-quality reference genome in interpreting the signals of selection so identified.


Subject(s)
Drug Resistance , Evolution, Molecular , Haemonchus/drug effects , Haemonchus/genetics , Ivermectin/pharmacology , Metagenomics , Quantitative Trait Loci , Animals , DNA, Helminth , Genetic Variation , Insecticides/pharmacology
18.
Cell Microbiol ; 21(1): e12969, 2019 01.
Article in English | MEDLINE | ID: mdl-30370674

ABSTRACT

The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular eukaryotic pathogens as they induce a transformation-like phenotype in their bovine host cell. T. annulata causes tropical theileriosis, which is frequently fatal, with infected leukocytes becoming metastatic and forming foci in multiple organs resulting in destruction of the lymphoid system. Exosomes, a subset of extracellular vesicles (EV), are critical in metastatic progression in many cancers. Here, we characterised the cargo of EV from a control bovine lymphosarcoma cell line (BL20) and BL20 infected with T. annulata (TBL20) by comparative mass spectrometry and microRNA (miRNA) profiling (data available via ProteomeXchange, identifier PXD010713 and NCBI GEO, accession number GSE118456, respectively). Ingenuity pathway analysis that many infection-associated proteins essential to migration and extracellular matrix digestion were upregulated in EV from TBL20 cells compared with BL20 controls. An altered repertoire of host miRNA, many with known roles in tumour and/or infection biology, was also observed. Focusing on the tumour suppressor miRNA, bta-miR-181a and bta-miR-181b, we identified putative messenger RNA targets and confirmed the interaction of bta-miR181a with ICAM-1. We propose that EV and their miRNA cargo play an important role in the manipulation of the host cell phenotype and the pathobiology of Theileria infection.


Subject(s)
Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Leukocytes/metabolism , Leukocytes/parasitology , MicroRNAs/analysis , Proteins/analysis , Theileria annulata/growth & development , Animals , Cattle , Cell Line
19.
Vet Parasitol ; 258: 79-87, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30105983

ABSTRACT

Ovine parasitic gastroenteritis is a complex disease routinely treated using anthelmintics. Although many different strongyle species may contribute to parasitic gastroenteritis, not all are equally pathogenic: in temperate regions, the primary pathogen is Teladorsagia circumcincta. In this study we investigated benzimidazole and ivermectin resistance on a commercial sheep farm in southeast Scotland. We assessed the impact of species diversity on the diagnosis of resistance using the faecal egg count reduction test and in vitro bioassays, and correlated the results with the frequency of benzimidazole resistance-associated genotypes measured in the T. circumcincta population by pyrosequencing of the ß-tubulin isotype-1 gene. Faecal egg count reduction test results showed efficacies of 65% for albendazole and 77% for ivermectin, indicating moderate resistance levels on the farm. However, PCR speciation of the same populations pre- and post-treatment revealed that removal of susceptible species had masked the presence of a highly resistant population of T. circumcincta. Less than 25% of individuals in the pre-treatment populations were T. circumcincta, the remainder consisting of Cooperia curticei, Chabertia ovina, Oesophagostomum venulosum and Trichostrongylus spp. In contrast, post-treatment with albendazole or ivermectin, the majority (88% and 100% respectively) of the populations consisted of T. circumcincta. The egg hatch test for benzimidazole resistance and the larval development test for ivermectin resistance were carried out using eggs obtained from the same populations and the results were broadly consistent with the faecal egg count reduction test. Thirty individual T. circumcincta from each sampling time point were assessed for benzimidazole resistance by pyrosequencing, revealing a high frequency and diversity of resistance-associated mutations, including within the population sampled post-ivermectin treatment. These results highlight the potential diversity of parasite species present on UK farms, and their importance in the diagnosis of anthelmintic resistance. On this particular farm, we demonstrate the presence of a highly dual-resistant population of T. circumcincta, which was strongly selected by treatment with either benzimidazoles or ivermectin, while other potentially less pathogenic species were removed.


Subject(s)
Anthelmintics/pharmacology , Drug Resistance , Gastroenteritis/veterinary , Sheep Diseases/parasitology , Trichostrongyloidea/drug effects , Trichostrongyloidiasis/veterinary , Animals , Anthelmintics/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Biological Assay , Farms , Feces/parasitology , Gastroenteritis/drug therapy , Gastroenteritis/epidemiology , Gastroenteritis/parasitology , Genetic Variation , Ivermectin/pharmacology , Ivermectin/therapeutic use , Parasite Egg Count/methods , Polymerase Chain Reaction/methods , Sheep , Sheep Diseases/drug therapy , Sheep Diseases/epidemiology , Trichostrongyloidea/genetics , Trichostrongyloidea/pathogenicity , Trichostrongyloidiasis/drug therapy , Trichostrongyloidiasis/epidemiology , Trichostrongyloidiasis/parasitology , United Kingdom/epidemiology
20.
Int J Parasitol ; 48(5): 395-402, 2018 04.
Article in English | MEDLINE | ID: mdl-29534987

ABSTRACT

Some nematode species are economically important parasites of livestock, while others are important human pathogens causing some of the most important neglected tropical diseases. In both humans and animals, anthelmintic drug administration is the main control strategy, but the emergence of drug-resistant worms has stimulated the development of alternative control approaches. Among these, vaccination is considered to be a sustainable and cost effective strategy. Currently, Barbervax® for the ruminant strongylid Haemonchus contortus is the only registered subunit vaccine for a nematode parasite, although a vaccine for the human hookworm Necator americanus is undergoing clinical trials (HOOKVAC consortium). As both these vaccines comprise a limited number of proteins, there is potential for selection of nematodes with altered sequences or expression of the vaccine antigens. Here we compared the transcriptome of H. contortus populations from sheep vaccinated with Barbervax® with worms from control animals. Barbervax® antigens are native integral membrane proteins isolated from the brush border of the intestinal cells of the adult parasite and many of those are proteases. Our findings provide no evidence for changes in expression of genes encoding Barbervax® antigens in the surviving parasite populations. However, surviving parasites from vaccinated animals showed increased expression of other proteases and regulators of lysosome trafficking, and displayed up-regulated lipid storage and defecation abilities that may have circumvented the effect of the vaccine. Implications for other potential vaccines for human and veterinary nematodes are discussed.


Subject(s)
Gene Expression Profiling , Necator americanus/metabolism , Necatoriasis/veterinary , Sheep Diseases/parasitology , Vaccines/immunology , Animals , Necatoriasis/prevention & control , Sheep , Sheep Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL