Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Immunity ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38733997

ABSTRACT

Several interleukin-1 (IL-1) family members, including IL-1ß and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.

2.
Nature ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599239

ABSTRACT

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.

3.
Sci Immunol ; 9(94): eadn1452, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38530158

ABSTRACT

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1ß release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.


Subject(s)
Pyroptosis , Animals , Humans , Mice , Gasdermins , Lipoylation , Proteomics
5.
Nature ; 624(7991): 451-459, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993712

ABSTRACT

Inflammatory caspases are key enzymes in mammalian innate immunity that control the processing and release of interleukin-1 (IL-1)-family cytokines1,2. Despite the biological importance, the structural basis for inflammatory caspase-mediated cytokine processing has remained unclear. To date, catalytic cleavage of IL-1-family members, including pro-IL-1ß and pro-IL-18, has been attributed primarily to caspase-1 activities within canonical inflammasomes3. Here we demonstrate that the lipopolysaccharide receptor caspase-4 from humans and other mammalian species (except rodents) can cleave pro-IL-18 with an efficiency similar to pro-IL-1ß and pro-IL-18 cleavage by the prototypical IL-1-converting enzyme caspase-1. This ability of caspase-4 to cleave pro-IL-18, combined with its previously defined ability to cleave and activate the lytic pore-forming protein gasdermin D (GSDMD)4,5, enables human cells to bypass the need for canonical inflammasomes and caspase-1 for IL-18 release. The structure of the caspase-4-pro-IL-18 complex determined using cryogenic electron microscopy reveals that pro-lL-18 interacts with caspase-4 through two distinct interfaces: a protease exosite and an interface at the caspase-4 active site involving residues in the pro-domain of pro-IL-18, including the tetrapeptide caspase-recognition sequence6. The mechanisms revealed for cytokine substrate capture and cleavage differ from those observed for the caspase substrate GSDMD7,8. These findings provide a structural framework for the discussion of caspase activities in health and disease.


Subject(s)
Caspases, Initiator , Interleukin-18 , Interleukin-1beta , Animals , Humans , Caspase 1/metabolism , Caspases, Initiator/metabolism , Cryoelectron Microscopy , Gasdermins/metabolism , Inflammasomes/metabolism , Interleukin-18/chemistry , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/metabolism , Protein Precursors/chemistry , Protein Precursors/metabolism , Catalytic Domain
6.
Nat Immunol ; 24(7): 1064-1075, 2023 07.
Article in English | MEDLINE | ID: mdl-37277654

ABSTRACT

The regulated disruption of the plasma membrane, which can promote cell death, cytokine secretion or both is central to organismal health. The protein gasdermin D (GSDMD) is a key player in this process. GSDMD forms membrane pores that can promote cytolysis and the release of interleukin-1 family cytokines into the extracellular space. Recent discoveries have revealed biochemical and cell biological mechanisms that control GSDMD pore-forming activity and its diverse downstream immunological effects. Here, we review these multifaceted regulatory activities, including mechanisms of GSDMD activation by proteolytic cleavage, dynamics of pore assembly, regulation of GSDMD activities by posttranslational modifications, membrane repair and the interplay of GSDMD and mitochondria. We also address recent insights into the evolution of the gasdermin family and their activities in species across the kingdoms of life. In doing so, we hope to condense recent progress and inform future studies in this rapidly moving field in immunology.


Subject(s)
Gasdermins , Intracellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Pyroptosis , Interleukin-1/metabolism , Cell Membrane/metabolism , Inflammasomes/metabolism
7.
bioRxiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945424

ABSTRACT

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation by forming large transmembrane pores upon cleavage by inflammatory caspases. Here we report the surprising finding that GSDMD cleavage is not sufficient for its pore formation. Instead, GSDMD is lipidated by S-palmitoylation at Cys191 upon inflammasome activation, and only palmitoylated GSDMD N-terminal domain (GSDMD-NT) is capable of membrane translocation and pore formation, suggesting that palmitoylation licenses GSDMD activation. Treatment by the palmitoylation inhibitor 2-bromopalmitate and alanine mutation of Cys191 abrogate GSDMD membrane localization, cytokine secretion, and cell death, without affecting GSDMD cleavage. Because palmitoylation is formed by a reversible thioester bond sensitive to free thiols, we tested if GSDMD palmitoylation is regulated by cellular redox state. Lipopolysaccharide (LPS) mildly and LPS plus the NLRP3 inflammasome activator nigericin markedly elevate reactive oxygen species (ROS) and GSDMD palmitoylation, suggesting that these two processes are coupled. Manipulation of cellular ROS by its activators and quenchers augment and abolish, respectively, GSDMD palmitoylation, GSDMD pore formation and cell death. We discover that zDHHC5 and zDHHC9 are the major palmitoyl transferases that mediate GSDMD palmitoylation, and when cleaved, recombinant and partly palmitoylated GSDMD is 10-fold more active in pore formation than bacterially expressed, unpalmitoylated GSDMD, evidenced by liposome leakage assay. Finally, other GSDM family members are also palmitoylated, suggesting that ROS stress and palmitoylation may be a general switch for the activation of this pore-forming family. One-Sentence Summary: GSDMD palmitoylation is induced by ROS and required for pore formation.

8.
Cell Rep ; 42(1): 112008, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36662620

ABSTRACT

Reactive oxygen species (ROS) regulate the activities of inflammasomes, which are innate immune signaling organelles that induce pyroptosis. The mechanisms by which ROS control inflammasome activities are unclear and may be multifaceted. Herein, we report that the protein gasdermin D (GSDMD), which forms membrane pores upon cleavage by inflammasome-associated caspases, is a direct target of ROS. Exogenous and endogenous sources of ROS, and ROS-inducing stimuli that prime cells for pyroptosis induction, promote oligomerization of cleaved GSDMD, leading to membrane rupture and cell death. We find that ROS enhance GSDMD activities through oxidative modification of cysteine 192 (C192). Within macrophages, GSDMD mutants lacking C192 show impaired ability to form membrane pores and induce pyroptosis. Reciprocal mutagenesis studies reveal that C192 is the only cysteine within GSDMD that mediates ROS responsiveness. Cellular redox state is therefore a key determinant of GSDMD activities.


Subject(s)
Inflammasomes , Intracellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Inflammasomes/metabolism , Gasdermins , Reactive Oxygen Species/metabolism , Cysteine/metabolism , Neoplasm Proteins/metabolism , Oxidation-Reduction
9.
Elife ; 112022 12 05.
Article in English | MEDLINE | ID: mdl-36468682

ABSTRACT

First recognized more than 30 years ago, glycine protects cells against rupture from diverse types of injury. This robust and widely observed effect has been speculated to target a late downstream process common to multiple modes of tissue injury. The molecular target of glycine that mediates cytoprotection, however, remains elusive. Here, we show that glycine works at the level of NINJ1, a newly identified executioner of plasma membrane rupture in pyroptosis, necrosis, and post-apoptosis lysis. NINJ1 is thought to cluster within the plasma membrane to cause cell rupture. We demonstrate that the execution of pyroptotic cell rupture is similar for human and mouse NINJ1 and that NINJ1 knockout functionally and morphologically phenocopies glycine cytoprotection in macrophages undergoing lytic cell death. Next, we show that glycine prevents NINJ1 clustering by either direct or indirect mechanisms. In pyroptosis, glycine preserves cellular integrity but does not affect upstream inflammasome activities or accompanying energetic cell death. By positioning NINJ1 clustering as a glycine target, our data resolve a long-standing mechanism for glycine-mediated cytoprotection. This new understanding will inform the development of cell preservation strategies to counter pathologic lytic cell death.


Subject(s)
Glycine , Pyroptosis , Mice , Humans , Animals , Glycine/pharmacology , Glycine/metabolism , Cell Death , Inflammasomes/metabolism , Cell Membrane/metabolism , Cluster Analysis , Cell Adhesion Molecules, Neuronal/metabolism , Nerve Growth Factors/metabolism
10.
STAR Protoc ; 3(4): 101848, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595884

ABSTRACT

The inflammatory caspases, such as caspase-1, caspase-4, or caspase-11, are key enzymes in mammalian innate immunity as they control inflammasome-dependent inflammation. Assessing the specific proteolytic activities of these caspases in the context of a cell remains challenging, which is why in vitro studies of their catalytic activity have proven useful. Herein, we describe a detailed protocol for the purification of recombinant inflammatory caspases after heterologous expression in bacteria and how to assess and quantify cleavage of full-length protein substrates. For complete details on the use and execution of this protocol, please refer to Devant et al. (2021).1.


Subject(s)
Caspases , Inflammation , Animals , Caspases/genetics , Caspases/metabolism , Inflammation/metabolism , Immunity, Innate , Inflammasomes , Mammals/metabolism
11.
Sci Immunol ; 6(62)2021 08 10.
Article in English | MEDLINE | ID: mdl-34734155

ABSTRACT

Innate immune signaling pathways comprise multiple proteins that promote inflammation. This multistep means of information transfer suggests that complexity is a prerequisite for pathway design. Herein, we test this hypothesis by studying caspases that regulate inflammasome-dependent inflammation. Several caspases differ in their ability to recognize bacterial LPS and cleave interleukin-1ß (IL-1ß). No caspase is known to contain both activities, yet distinct caspases with complementary activities bookend an LPS-induced pathway to IL-1ß cleavage. Using caspase-1/4 hybrid proteins present in canines as a guide, we identified molecular determinants of IL-1ß cleavage specificity within caspase-1. This knowledge enabled the redesign of human caspase-4 to operate as a one-protein signaling pathway, which intrinsically links LPS detection to IL-1ß cleavage and release, independent of inflammasomes. We identified caspase-4 homologues in multiple carnivorans which display the activities of redesigned human caspase-4. These findings illustrate natural signaling pathway diversity and highlight how multistep innate immune pathways can be condensed into a single protein.


Subject(s)
Caspases, Initiator/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharide Receptors/metabolism , Animals , Caspases, Initiator/immunology , Cells, Cultured , Dogs , Escherichia coli/chemistry , Humans , Interleukin-1beta/immunology , Lipopolysaccharide Receptors/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Mice , Mice, Knockout
12.
Front Immunol ; 12: 730471, 2021.
Article in English | MEDLINE | ID: mdl-34566992

ABSTRACT

The ligand-binding surface of the B cell receptor (BCR) is formed by encoded and non-encoded antigen complementarity determining regions (CDRs). Genetically reproducible or 'public' antibodies can arise when the encoded CDRs play deterministic roles in antigen recognition, notably within human broadly neutralizing antibodies against HIV and influenza virus. We sought to exploit this by engineering virus-like-particle (VLP) vaccines that harbor multivalent affinity against gene-encoded moieties of the BCR antigen binding site. As proof of concept, we deployed a library of RNA bacteriophage VLPs displaying random peptides to identify a multivalent antigen that selectively triggered germline BCRs using the human VH gene IGVH1-2*02. This VLP selectively primed IGHV1-2*02 BCRs that were present within a highly diversified germline antibody repertoire within humanized mice. Our approach thus provides methodology to generate antigens that engage specific BCR configurations of interest, in the absence of structure-based information.


Subject(s)
B-Lymphocytes/immunology , Protein Engineering , RNA Phages/immunology , Receptors, Antigen, B-Cell/immunology , Single-Domain Antibodies/immunology , Vaccines, Virus-Like Particle/immunology , Adoptive Transfer , Animals , Antibody Specificity , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/transplantation , Female , Gene Library , Humans , Ligands , Male , Mice, Transgenic , Proof of Concept Study , RNA Phages/genetics , RNA Phages/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Vaccination , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/metabolism
13.
Nat Commun ; 12(1): 5610, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584079

ABSTRACT

Introns of human transfer RNA precursors (pre-tRNAs) are excised by the tRNA splicing endonuclease TSEN in complex with the RNA kinase CLP1. Mutations in TSEN/CLP1 occur in patients with pontocerebellar hypoplasia (PCH), however, their role in the disease is unclear. Here, we show that intron excision is catalyzed by tetrameric TSEN assembled from inactive heterodimers independently of CLP1. Splice site recognition involves the mature domain and the anticodon-intron base pair of pre-tRNAs. The 2.1-Å resolution X-ray crystal structure of a TSEN15-34 heterodimer and differential scanning fluorimetry analyses show that PCH mutations cause thermal destabilization. While endonuclease activity in recombinant mutant TSEN is unaltered, we observe assembly defects and reduced pre-tRNA cleavage activity resulting in an imbalanced pre-tRNA pool in PCH patient-derived fibroblasts. Our work defines the molecular principles of intron excision in humans and provides evidence that modulation of TSEN stability may contribute to PCH phenotypes.


Subject(s)
Cerebellar Diseases/metabolism , Endonucleases/metabolism , Mutation , RNA Precursors/metabolism , RNA Splicing , RNA, Transfer/metabolism , Animals , Cerebellar Diseases/genetics , Crystallography, X-Ray , Endonucleases/chemistry , Endonucleases/genetics , Endoribonucleases/chemistry , Endoribonucleases/genetics , Endoribonucleases/metabolism , HEK293 Cells , Humans , Introns/genetics , Protein Conformation , Protein Multimerization , RNA Precursors/genetics , RNA, Transfer/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sf9 Cells , Spodoptera
14.
Cell ; 184(17): 4495-4511.e19, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34289345

ABSTRACT

The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Protein Multimerization , Pyroptosis , Signal Transduction , Amino Acids/metabolism , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Cell Line , Genetic Testing , Humans , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nerve Growth Factors/metabolism , Phosphate-Binding Proteins/chemistry , Protein Domains , RNA, Guide, Kinetoplastida/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...