Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(7)2023 07 11.
Article in English | MEDLINE | ID: mdl-37509140

ABSTRACT

A quantitative histology of maize stems is needed to study the role of tissue and of their chemical composition in plant development and in their end-use quality. In the present work, a new methodology is proposed to show and quantify the spatial variability of tissue composition in plant organs and to statistically compare different samples accounting for biological variability. Multispectral UV/visible autofluorescence imaging was used to acquire a macroscale image series based on the fluorescence of phenolic compounds in the cell wall. A series of 40 multispectral large images of a whole internode section taken from four maize inbred lines were compared. The series consisted of more than 1 billion pixels and 11 autofluorescence channels. Principal Component Analysis was adapted and named large PCA and score image montages at different scales were built. Large PCA score distributions were proposed as quantitative features to compare the inbred lines. Variations in the tissue fluorescence were clearly displayed in the score images. General intensity variations were identified. Rind vascular bundles were differentiated from other tissues due to their lignin fluorescence after visible excitation, while variations within the pith parenchyma were shown via UV fluorescence. They depended on the inbred line, as revealed by the first four large PCA score distributions. Autofluorescence macroscopy combined with an adapted analysis of a series of large images is promising for the investigation of the spatial heterogeneity of tissue composition between and within organ sections. The method is easy to implement and can be easily extended to other multi-hyperspectral imaging techniques. The score distributions enable a global comparison of the images and an analysis of the inbred lines' effect. The interpretation of the tissue autofluorescence needs to be further investigated by using complementary spatially resolved techniques.


Subject(s)
Zea mays , Principal Component Analysis
2.
Bioresour Technol ; 353: 127140, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35405211

ABSTRACT

This work presents a dynamic view of the enzymatic degradation of maize cell walls, and sheds new light on the recalcitrance of hot water pretreated maize stem internodes. Infra-red microspectrometry, mass spectrometry, fluorescence recovery after photobleaching and fluorescence imaging were combined to investigate enzymatic hydrolysis at the cell scale. Depending on their polymer composition and organisation, cell types exhibits different extent and rate of enzymatic degradation. Enzymes act sequentially from the cell walls rich in accessible cellulose to the most recalcitrant cells. This phenomenon can be linked to the heterogeneous distribution of enzymes in the liquid medium and the adsorption/desorption mechanisms that differ with the type of cell.


Subject(s)
Hot Temperature , Zea mays , Cellulose/chemistry , Hydrolysis , Lignin/chemistry , Water/chemistry , Zea mays/chemistry
3.
Front Plant Sci ; 12: 792981, 2021.
Article in English | MEDLINE | ID: mdl-34970289

ABSTRACT

The proportion and composition of plant tissues in maize stems vary with genotype and agroclimatic factors and may impact the final biomass use. In this manuscript, we propose a quantitative histology approach without any section labelling to estimate the proportion of different tissues in maize stem sections as well as their chemical characteristics. Macroscopic imaging was chosen to observe the entire section of a stem. Darkfield illumination was retained to visualise the whole stem cellular structure. Multispectral autofluorescence images were acquired to detect cell wall phenolic compounds after UV and visible excitations. Image analysis was implemented to extract morphological features and autofluorescence pseudospectra. By assimilating the internode to a cylinder, the relative proportions of tissues in the internode were estimated from their relative areas in the sections. The approach was applied to study a series of 14 maize inbred lines. Considerable variability was revealed among the 14 inbred lines for both anatomical and chemical traits. The most discriminant morphological descriptors were the relative amount of rind and parenchyma tissues together with the density and size of the individual bundles, the area of stem and the parenchyma cell diameter. The rind, as the most lignified tissue, showed strong visible-induced fluorescence which was line-dependant. The relative amount of para-coumaric acid was associated with the UV-induced fluorescence intensity in the rind and in the parenchyma near the rind, while ferulic acid amount was significantly correlated mainly with the parenchyma near the rind. The correlation between lignin and the tissue pseudospectra showed that a global higher amount of lignin resulted in a higher level of lignin fluorescence whatever the tissues. We demonstrated here the potential of darkfield and autofluorescence imaging coupled with image analysis to quantify histology of maize stem and highlight variability between different lines.

4.
Plant Sci ; 306: 110845, 2021 May.
Article in English | MEDLINE | ID: mdl-33775355

ABSTRACT

Cereal grains provide a substantial part of the calories for humans and animals. The main quality determinants of grains are polysaccharides (mainly starch but also dietary fibers such as arabinoxylans, mixed-linkage glucans) and proteins synthesized and accumulated during grain development in a specialized storage tissue: the endosperm. In this study, the composition of a structure localized at the interface of the vascular tissues of the maternal plant and the seed endosperm was investigated. This structure is contained in the endosperm cavity where water and nutrients are transferred to support grain filling. While studying the wheat grain development, the cavity content was found to autofluoresce under UV light excitation. Combining multispectral analysis, Fourier-Transform infrared spectroscopy, immunolabeling and laser-dissection coupled with wet chemistry, we identified in the cavity arabinoxylans and hydroxycinnamic acids. The cavity content forms a "gel" in the developing grain, which persists in dry mature grain and during subsequent imbibition. Microscopic magnetic resonance imaging revealed that the gel is highly hydrated. Our results suggest that arabinoxylans are synthesized by the nucellar epidermis, released in the cavity where they form a highly hydrated gel which might contribute to regulate grain hydration.


Subject(s)
Endosperm/chemistry , Endosperm/metabolism , Triticum/chemistry , Triticum/metabolism , Xylans/chemistry , Xylans/metabolism , Edible Grain/chemistry , Edible Grain/metabolism , Spectroscopy, Fourier Transform Infrared
5.
Biotechnol Biofuels ; 14(1): 1, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33402195

ABSTRACT

BACKGROUND: The recalcitrance of lignocellulosics to enzymatic saccharification has been related to many factors, including the tissue and molecular heterogeneity of the plant particles. The role of tissue heterogeneity generally assessed from plant sections is not easy to study on a large scale. In the present work, dry fractionation of ground maize shoot was performed to obtain particle fractions enriched in a specific tissue. The degradation profiles of the fractions were compared considering physical changes in addition to chemical conversion. RESULTS: Coarse, medium and fine fractions were produced using a dry process followed by an electrostatic separation. The physical and chemical characteristics of the fractions varied, suggesting enrichment in tissue from leaves, pith or rind. The fractions were subjected to enzymatic hydrolysis in a torus reactor designed for real-time monitoring of the number and size of the particles. Saccharification efficiency was monitored by analyzing the sugar release at different times. The lowest and highest saccharification yields were measured in the coarse and fine fractions, respectively, and these yields paralleled the reduction in the size and number of particles. The behavior of the positively- and negatively-charged particles of medium-size fractions was contrasted. Although the amount of sugar release was similar, the changes in particle size and number differed during enzymatic degradation. The reduction in the number of particles proceeded faster than that of particle size, suggesting that degradable particles were degraded to the point of disappearance with no significant erosion or fragmentation. Considering all fractions, the saccharification yield was positively correlated with the amount of water associated with [5-15 nm] pore size range at 67% moisture content while the reduction in the number of particles was inversely correlated with the amount of lignin. CONCLUSION: Real-time monitoring of sugar release and changes in the number and size of the particles clearly evidenced different degradation patterns for fractions of maize shoot that could be related to tissue heterogeneity in the plant. The biorefinery process could benefit from the addition of a sorting stage to optimise the flow of biomass materials and take better advantage of the heterogeneity of the biomass.

6.
Plant Methods ; 16: 63, 2020.
Article in English | MEDLINE | ID: mdl-32391070

ABSTRACT

BACKGROUND: The cellular morphology of plant organs is strongly related to other physical properties such as shape, size, growth, mechanical properties or chemical composition. Cell morphology often vary depending on the type of tissue, or on the distance to a specific tissue. A common challenge in quantitative plant histology is to quantify not only the cellular morphology, but also its variations within the image or the organ. Image texture analysis is a fundamental tool in many areas of image analysis, that was proven efficient for plant histology, but at the scale of the whole image. RESULTS: This work presents a method that generates a parametric mapping of cellular morphology within images of plant tissues. It is based on gray level granulometry from mathematical morphology for extracting image texture features, and on Centroidal Voronoi Diagram for generating a partition of the image. Resulting granulometric curves can be interpreted either through multivariate data analysis or by using summary features corresponding to the local average cell size. The resulting parametric maps describe the variations of cellular morphology within the organ. CONCLUSIONS: We propose a methodology for the quantification of cellular morphology and of its variations within images of tissue sections. The results should help understanding how the cellular morphology is related to genotypic and / or environmental variations, and clarify the relationships between cellular morphology and chemical composition of cell walls.

7.
Sci Rep ; 9(1): 12551, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467440

ABSTRACT

The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme's diffusion within it. The enzyme mobility was followed by synchrotron microscopy thanks to its auto-fluorescence after deep-UV excitation. Time-lapse imaging and quantification of intensity signal by image analysis revealed that the diffusion of the enzyme was impacted by at least two criteria: (i) only the active enzyme was able to diffuse, showing that the mobility was related to the catalytic ability, and (ii) the diffusion was improved by the presence of cellulose in the gel.

8.
PLoS One ; 14(7): e0219923, 2019.
Article in English | MEDLINE | ID: mdl-31361770

ABSTRACT

Plant cell walls development is an integrated process during which several components are deposited successively. In the cell walls in grass, the accessibility of structural polysaccharides is limited by the cell walls structure and composition mainly as a result of phenolic compounds. Here, we studied the patterns of cell walls establishment in the internode supporting the ear in three distinct maize genotypes. The developmental patterns observed in the internode cell walls in terms of its composition are reported with an emphasis on lignification, p-coumaroylation and feruloylation. We combined biochemical and histological approaches and revealed that internode cell walls development in maize before flowering is characterized by the rapid deposition of secondary cell walls components and robust lignification in both the pith and the rind. After flowering and until silage maturity, the slow deposition of secondary walls components occurs in the cortical region, and the deposited lignins are rich in ß-O-4 bonds and are highly p-coumaroylated. We conclude the paper by proposing a revised spatiotemporal model based on that proposed by Terashima et al. (1993) for cell walls development in grass.


Subject(s)
Coumaric Acids/chemistry , Lignin/chemistry , Propionates/chemistry , Zea mays/growth & development , Cell Wall/chemistry , Genotype , Inbreeding , Plant Extracts/chemistry , Tissue Distribution , Zea mays/chemistry , Zea mays/genetics
9.
Plant Sci ; 283: 51-59, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31128715

ABSTRACT

Phenolic compounds in fruit are involved in responses to biotic and abiotic stresses and are responsible for organoleptic properties. To establish the distribution of these secondary metabolites at the tissue and sub-cellular scales, mapping of fluorescence in apple epidermis and outer cortex tissue in cryogenic condition was performed after deep-UV excitation at 275 nm. Douce Moën and Guillevic cider apple varieties were sampled and frozen after harvest, after 30 days at 4 °C and after 20 days at room temperature. Image analysis of fluorescence emission images acquired between 300 and 650 nm allowed the assignment of fluorescence signals to phenolic compound families based on reference molecules. Emission attributed to monomeric and/or condensed flavanol was localized in whole tissue with major fluorescence in the cuticle region. Hydroxycinnamic acids were found predominantly in the outer cortex and appeared in the cell wall. Fluorescent pigments were mostly found in the epidermis. The distribution of flavanols in the sub-cuticle and phenolic acids in the outer cortex distinguished apple varieties. Storage conditions had no impact on phenolic distribution. The proposed fluorescent imaging and analysis approach enables studies on phenolic distribution in relation to fruit development, biotic/abiotic stress resistance and quality.


Subject(s)
Malus/metabolism , Phenols/metabolism , Plant Epidermis/metabolism , Cryoelectron Microscopy , Flavonoids/metabolism , Fruit/anatomy & histology , Fruit/metabolism , Malus/anatomy & histology , Microscopy, Confocal , Microscopy, Fluorescence , Plant Epidermis/anatomy & histology , Spectrometry, Fluorescence , Stilbenes/metabolism , Ultraviolet Rays
10.
Anal Chim Acta ; 1062: 47-59, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-30947995

ABSTRACT

Many plant tissues can be observed thanks to autofluorescence of their cell wall components. Hyperspectral autofluorescence imaging using confocal microscopy is a fast and efficient way of mapping fluorescent compounds in samples with a high spatial resolution. However a huge spectral overlap is observed between molecular species. As a consequence, a new data analysis approach is needed in order to fully exploit the potential of this spectroscopic technique and extract unbiased chemical information about complex biological samples. The objective of this work is to evaluate multi-excitation hyperspectral autofluorescence imaging to identify biological components in wheat grains during their development through their spectral profiles and corresponding contribution maps using Multivariate Curve Resolution - Alternating Least-Squares (MCR-ALS), a signal unmixing algorithm under proper constraints. For this purpose two different scenarios are used: 1) analyzing the total spectral domain of data sets using MCR-ALS under non negativity constraint in both spectral and spatial modes; 2) analyzing a reduced spectral domain of data sets using MCR-ALS under non negativity in both modes and trilinearity constraint in spectral mode. Considering the original instrumental setup and our data analysis approach, we will demonstrate that extracted contribution maps and spectral profiles of constituents can provide complementary information used to identify molecules in complex biological samples.


Subject(s)
Edible Grain/chemistry , Optical Imaging , Triticum/chemistry , Algorithms , Edible Grain/cytology , Edible Grain/growth & development , Least-Squares Analysis , Microscopy, Confocal , Multivariate Analysis , Triticum/cytology , Triticum/growth & development
11.
Plant Sci ; 276: 199-207, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30348319

ABSTRACT

Important biological, nutritional and technological roles are attributed to cell wall polymers from cereal grains. The composition of cell walls in dry wheat grain has been well studied, however less is known about cell wall deposition and modification in the grain outer layers during grain development. In this study, the composition of cell walls in the outer layers of the wheat grain (Triticum aestivum Recital cultivar) was investigated during grain development, with a focus on cell wall phenolics. We discovered that lignification of outer layers begins earlier than previously reported and long before the grain reaches its final size. Cell wall feruloylation increased in development. However, in the late stages, the amount of ferulate releasable by mild alkaline hydrolysis was reduced as well as the yield of lignin-derived thioacidolysis monomers. These reductions indicate that new ferulate-mediated cross-linkages of cell wall polymers appeared as well as new resistant interunit bonds in lignins. The formation of these additional linkages more specifically occurred in the outer pericarp. Our results raised the possibility that stiffening of cell walls occur at late development stages in the outer pericarp and might contribute to the restriction of the grain radial growth.


Subject(s)
Coumaric Acids/chemistry , Lignin/chemistry , Triticum/growth & development , Cell Wall/chemistry , Edible Grain/chemistry , Edible Grain/growth & development , Hydrolysis , Phenols/chemistry , Triticum/chemistry , Triticum/cytology
12.
Front Plant Sci ; 9: 200, 2018.
Article in English | MEDLINE | ID: mdl-29515611

ABSTRACT

Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation.

14.
Plant Sci ; 257: 48-62, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28224918

ABSTRACT

Tomato fruit texture depends on histology and cell wall architecture, both under genetic and developmental controls. If ripening related cell wall modifications have been well documented with regard to softening, little is known about cell wall construction during early fruit development. Identification of key events and their kinetics with regard to tissue architecture and cell wall development can provide new insights on early phases of texture elaboration. In this study, changes in pectin and hemicellulose chemical characteristics and location were investigated in the pericarp tissue of tomato (Solanum lycopersicon var Levovil) at four stages of development (7, 14 and 21day after anthesis (DPA) and mature green stages). Analysis of cell wall composition and polysaccharide structure revealed that both are continuously modified during fruit development. At early stages, the relative high rhamnose content in cell walls indicates a high synthesis of rhamnogalacturonan I next to homogalacturonan. Fine tuning of rhamnogalacturonan I side chains appears to occur from the cell expansion phase until prior to the mature green stage. Cell wall polysaccharide remodelling also concerns xyloglucans and (galacto)glucomannans, the major hemicelluloses in tomato cell walls. In situ localization of cell wall polysaccharides in pericarp tissue revealed non-ramified RG-I rich pectin and XyG at cellular junctions and in the middle lamella of young fruit. Blocks of non-methyl esterified homogalacturonan are detected as soon as 14 DPA in the mesocarp and remained restricted to cell corner and middle lamella whatever the stages. These results point to new questions about the role of pectin RGI and XyG in cell adhesion and its maintenance during cell expansion.


Subject(s)
Fruit/anatomy & histology , Fruit/growth & development , Pectins/metabolism , Polysaccharides/metabolism , Solanum lycopersicum/anatomy & histology , Solanum lycopersicum/metabolism , Cell Wall/metabolism , Epitopes/metabolism , Fluorescent Antibody Technique , Fruit/cytology , Fruit/ultrastructure , Glucans/metabolism , Solanum lycopersicum/cytology , Organ Size , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Xylans/metabolism
15.
Magn Reson Imaging ; 33(5): 671-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25708266

ABSTRACT

Water status and distribution at subcellular level in whole apple fruit were evaluated by Magnetic Resonance Imaging (MRI) measurement of the multi-exponential transverse (T2) relaxation of water protons. Apparent microporosity, also estimated by MRI, provided mapping of gas distribution in fruit tissues. Measuring for the first time the multi-exponential relaxation of water and apparent tissue microporosity in whole fruit and combining these with histological measurements provided a more reliable interpretation of the origins of variations in the transverse relaxation time (T2) and better characterization of the fruit tissue. Measurements were performed on 54 fruits from 3 different cultivars. Fruits of different sizes were selected for each cultivar to provide tissues with cells of different dimensions. Macrovision measurements were carried out on parenchymal tissue from all fruits to investigate the impact of cell size on T2 value. The results showed that the MRI transverse relaxation signal is well fitted by a tri-exponential decay curve that reflects cell compartmentalization. Variations in cell size partially explained the different T2 observed. This study highlighted the heterogeneity of apple tissues in terms of relaxation parameters, apparent microporosity and cell morphology and in relation to specific variations between fruit of different cultivars.


Subject(s)
Gases , Magnetic Resonance Imaging , Malus/chemistry , Water
16.
Appl Spectrosc ; 68(12): 1342-7, 2014.
Article in English | MEDLINE | ID: mdl-25358069

ABSTRACT

Lignins and their cross-linking to hemicelluloses detrimentally affect the cellulose-to-ethanol conversion of grass lignocelluloses. Screening appropriate grass cell walls and their compositional changes during the various steps of the process calls for a high-throughput analytical technique. Such a performance can be fulfilled by Fourier transform mid-infrared (FT-MIR) spectroscopy. In the present paper, a set of maize cell walls from mature stems were selected, including brown midrib samples. Lignin fractions were isolated by mild acidolysis to obtain a set of purified maize lignin standards. The lignin content and the percentage of lignin-derived p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) thioacidolysis monomers were determined. In addition, the composition of cell wall polysaccharides, as well as the amount of ester-linked p-coumaric (CA) and ferulic (FA) acids, was measured by wet chemistry. Partial least square (PLS) analyses were applied to infrared and chemical data of cell walls. The resulting models showed a good predictive ability with regard to the lignin content, to the frequency of S (or G) thioacidolysis monomers, and to the level of ester-linked CA of maize cell walls. The loading plots and regression coefficients revealed relevant infrared absorption bands.


Subject(s)
Lignin/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Sulfinic Acids/chemistry , Thiourea/analogs & derivatives , Zea mays/chemistry , Lignin/analysis , Plant Extracts/analysis , Plant Extracts/chemistry , Sulfinic Acids/analysis , Thiourea/analysis , Thiourea/chemistry
17.
PLoS One ; 9(3): e90673, 2014.
Article in English | MEDLINE | ID: mdl-24622152

ABSTRACT

The cellular structure of plant tissues is a key parameter for determining their properties. While the morphology of cells can easily be described, few studies focus on the spatial distribution of different types of tissues within an organ. As plants have various shapes and sizes, the integration of several individuals for statistical analysis of tissues distribution is a difficult problem. The aim of this study is to propose a method that quantifies the average spatial organisation of vascular bundles within maize stems, by integrating information from replicated images. In order to compare observations made on stems of different sizes and shapes, a spatial normalisation strategy was used. A model of average stem contour was computed from the digitisation of several stem slab images. Point patterns obtained from individual stem slices were projected onto the average stem to normalise them. Group-wise analysis of the spatial distribution of vascular bundles was applied on normalised data through the construction of average intensity maps. A quantitative description of average bundle organisation was obtained, via a 3D model of bundle distribution within a typical maize internode. The proposed method is generic and could easily be extended to other plant organs or organisms.


Subject(s)
Image Processing, Computer-Assisted/methods , Models, Statistical , Plant Vascular Bundle/cytology , Zea mays/cytology , Software
18.
Ann Bot ; 105(2): 265-76, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19952012

ABSTRACT

BACKGROUND AND AIMS: The cellular structure of fleshy fruits is of interest to study fruit shape, size, mechanical behaviour or sensory texture. The cellular structure is usually not observed in the whole fruit but, instead, in a sample of limited size and volume. It is therefore difficult to extend measurements to the whole fruit and/or to a specific genotype, or to describe the cellular structure heterogeneity within the fruit. METHODS: An integrated method is presented to describe the cellular structure of the whole fruit from partial three-dimensional (3D) observations, involving the following steps: (1) fruit sampling, (2) 3D image acquisition and processing and (3) measurement and estimation of relevant 3D morphological parameters. This method was applied to characterize DR12 mutant and wild-type tomatoes (Solanum lycopersicum). KEY RESULTS: The cellular structure was described using the total volume of the pericarp, the surface area of the cell walls and the ratio of cell-wall surface area to pericarp volume, referred to as the cell-wall surface density. The heterogeneity of cellular structure within the fruit was investigated by estimating variations in the cell-wall surface density with distance to the epidermis. CONCLUSIONS: The DR12 mutant presents a greater pericarp volume and an increase of cell-wall surface density under the epidermis.


Subject(s)
Cell Wall/metabolism , Fruit/cytology , Microscopy, Confocal , Plants, Genetically Modified/cytology , Solanum lycopersicum/cytology , Fruit/genetics , Solanum lycopersicum/genetics , Models, Biological , Plants, Genetically Modified/genetics
19.
Magn Reson Imaging ; 27(5): 709-19, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19144488

ABSTRACT

In this study, magnetic resonance imaging (MRI) was applied to study the structural aspects of the tomato fruit. The main study was performed on tomatoes (cv. Tradiro) using a 0.2-T electromagnet scanner. Spin-echo images were acquired to visualize the tomato macrostructure. The air bubble content in tissues was evaluated by exploiting susceptibility effects using multiple gradient echo images. The microstructure was further studied by measuring spin-spin (T(2)) and spin-lattice (T(1)) relaxation time distributions. Nuclear magnetic resonance relaxometry, macro vision imaging and chemical analysis were used as complementary and independent experimental methods in order to emphasize the MRI results. MRI images showed that the air bubble content varied between tissues. The presence of gas was attested by macro vision images. Quantitative imaging showed that T(2) and T(1) maps obtained by MRI reflected the structural differences between tomato tissues and made it possible to distinguish between them. The results indicated that cell size and chemical composition contribute to the relaxation mechanism.


Subject(s)
Algorithms , Fruit/cytology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Solanum lycopersicum/cytology , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
20.
J Exp Bot ; 59(2): 273-88, 2008.
Article in English | MEDLINE | ID: mdl-18267945

ABSTRACT

It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes. At mature green stage, pectin content in methyl ester groups was slightly higher in AS-DR12 fruit than in wild type, but this ratio was reversed at the red-ripe stage. The amount of water- and oxalate-soluble pectins increased at the red-ripe stage in the wild type, but decreased in AS-DR12. The distribution of methyl ester groups on the homogalaturonan backbone differed between the two genotypes. There was no evidence of more calcium cross-linked homogalacturan involved in cell-to-cell adhesion in AS-DR12 compared with wild-type fruit. Furthermore, the outer pericarp contains higher proportion of small cells in AS-DR12 fruit than in wild type and higher occurrence of (1-->5) alpha-L-arabinan epitope at the RR stage. It is concluded that the increased firmness of transgenic fruit does not result from a major impairment of ripening-related pectin metabolism, but rather involves differences in pectin fine structure associated with changes in tissue architecture.


Subject(s)
Cell Wall/metabolism , Fruit/metabolism , Pectins/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Carbohydrates/isolation & purification , Cell Wall/ultrastructure , Down-Regulation , Fruit/ultrastructure , Immunochemistry , Solanum lycopersicum/genetics , Solanum lycopersicum/ultrastructure , Oxalic Acid/chemistry , Pectins/chemistry , Pectins/ultrastructure , Plant Extracts/chemistry , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...