Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Environ Monit Assess ; 196(5): 461, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642157

ABSTRACT

Heavy metal pollution is an enduring environmental challenge that calls for sustainable and eco-friendly solutions. One promising approach is to harness discarded plant biomass as a highly efficient environmental friendly adsorbents. In this context, a noteworthy study has spotlighted the employment of Euryale ferox Salisbury seed coat (E.feroxSC) for the exclusion of trivalent and hexavalent chromium ions. This study aims to transform discarded plant residue into a novel, environmentally friendly, and cost-effective alternative adsorbent, offering a compelling alternative to more expensive adsorption methods. By repurposing natural materials, we can contribute to mitigating heavy-metal pollution while promoting sustainable and economically viable solutions in environmental remediation. The effect of different parameters, i.e., chromium ions' initial concentration (5-25 mg L-1), solution pH (2-7), adsorbent dosage (0.2-2.4 g L-1), contact time (20-240 min), and temperature (298-313 K), were investigated. E.feroxSC proved highly effective, achieving 96.5% removal of Cr(III) ions at pH 6 and 97.7% removal of Cr(VI) ions at pH 2, with a maximum biosorption capacity of 18.33 mg/g for Cr(III) and 13.64 mg/g for Cr(VI), making it a promising, eco-friendly adsorbent for tackling heavy-metal pollution. The adsorption process followed the pseudo-second-order kinetic model, aligning well with the Langmuir isotherm, exhibited favorable thermodynamics, and was characterized as feasible, spontaneous, and endothermic with physisorption mechanisms. The investigation revealed that E.feroxSC effectively adsorbed Cr(VI) which could be rejuvenated in a basic solution with minimal depletion in its adsorption capacity. Conversely, E.feroxSC's adsorption of Cr(III) demanded rejuvenation in an acidic milieu, exhibiting comparatively less efficient restoration.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Environmental Monitoring , Chromium/analysis , Water , Thermodynamics , Kinetics , Adsorption
2.
Environ Sci Pollut Res Int ; 31(4): 6025-6039, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38135795

ABSTRACT

The study examines the adsorption capabilities of an environmentally friendly activated carbon derived from a novel activating agent, i.e., an edible alkali prepared from black gram plant ash, for the removal of Cr(III) and Cr(VI) ions from an aqueous environment. The results of the systematic research show impressive removal efficiencies of 95.12% for Cr(III) ions and 99.6% for Cr(VI) ions. The kinetics and equilibrium data of the adsorption process confirm to the pseudo-second-order kinetics and Freundlich isotherm model. The thermodynamic analysis reveals the adsorption process as feasible and spontaneous across the temperature range of 298-313 K. The mechanism entails electrostatic attraction and adsorption of Cr(III) and Cr(VI) ions on oppositely charged surfaces and the participation of oxygen-containing functional groups on WHAC-BGA surface in the reduction of Cr(VI) to Cr(III). This study provides valuable insights for optimizing strategies to combat chromium contamination in water sources, offering a sustainable solution with the potential for real-world application.


Subject(s)
Eichhornia , Water Pollutants, Chemical , Charcoal , Alkalies , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Chromium/analysis , Adsorption , Kinetics , Ions
3.
Environ Sci Pollut Res Int ; 30(54): 115185-115198, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37878173

ABSTRACT

Pesticides are an indispensable part of modern farming as it aids in controlling pests and hence increase crop yield. But, unmanaged use of pesticides is a growing concern for safety and conservation of the environment. In the present study, a novel biosurfactant-producing bacterium, Pseudomonas aeruginosa S07, was utilized to degrade carbofuran pesticide, and it was obtained at 150 mg/L concentration; 89.2% degradation was achieved on the 5th day of incubation in in vitro culture condition. GC-MS (gas chromatography and mass spectrometry) and LC-MS (liquid chromatography and mass spectrometry) analyses revealed the presence of several degradation intermediates such as hydroxycarbofurnan, ketocarbofuran, and hydroxybenzofuran, in the degradation process. The bacterium was found to exhibit tolerance towards several heavy metals: Cu, Co, Zn, Ni, and Cd, where maximum and least tolerance were obtained against Co and Ni, respectively. Additionally, the bacterium also possesses plant growth-promoting activity showing positive results in nitrogen fixation, phosphate solubilising, ammonia production, and potassium solubilizing assays. Thus, from the study, it can be assumed that the bacterium can be useful in the production of bioformulation for remediation and rejuvenation of pesticide-contaminated sites in the coming days.


Subject(s)
Carbofuran , Metals, Heavy , Pesticides , Soil Pollutants , Carbofuran/analysis , Pseudomonas aeruginosa/metabolism , Gas Chromatography-Mass Spectrometry , Biodegradation, Environmental , Metals, Heavy/analysis , Pesticides/analysis , Bacteria/metabolism , Soil Pollutants/analysis
4.
Environ Monit Assess ; 195(11): 1362, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37872312

ABSTRACT

Silver-doped-titanium dioxide nanoparticles supported on Fuller's earth, prepared by the sol-gel method, were characterized with XRD, TGA, zeta potential, SEM, EDX, TEM, XPS, photoluminescence and UV-DRS measurements. The material, Ag-TiO2-Fuller's earth (AgTF), was tested for photocatalytic activity concerning the degradation of rhodamine B (RhB) and methylene blue (MB) in aqueous solution under visible light irradiation with pH, catalyst dosage, and dye concentration as the process variables. The degradation kinetics indicated pseudo-first-order kinetics with rate constant of (i) 0.55 min-1with 0.12 gL-1AgTF loading, 10-5 M MB at pH 9, and (ii) 0.53 min-1 with 0.08 g L-1 AgTF loading, 5 × 10-5 M RhB at pH 8. The methylene blue degradation was maximum (98.66%) for AgTF loading of 0.12 g L-1 while the maximum RhB degradation (96.34%) was attained with AgTF loading of 0.08 g L-1. With 5 × 10-6M MB concentration, the degradation achieved was 98% in 45 min and 100% in 60 min. One hundred per cent degradation of the dye, RhB (1 × 10-6 M) could be achieved in 30 min with 0.08 g L-1 AgTF at pH 8. The use of Fuller's earth, a cheap, abundant and large surface area support, increases the adsorbability of the dye on the catalyst surface and hence promotes the degradation. The catalyst could be removed easily from the reaction mixture and reused for up to five cycles without any significant decrease in activity. Scavengers such as triethanolamine (TEOA), p-benzoquinone (BQ) and isopropyl alcohol (IPA) were utilized to get some insight into the photocatalysis mechanism.


Subject(s)
Methylene Blue , Nanocomposites , Methylene Blue/chemistry , Silver , Environmental Monitoring , Light , Titanium/chemistry , Nanocomposites/chemistry , Catalysis
5.
Environ Monit Assess ; 195(9): 1044, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589779

ABSTRACT

Ash collected from thrown-away by-products while preparing a popular traditional food additive, kolakhar of the Assamese community of North East, India, was used as an alternate cost-effective, porous bioadsorbent option from the conventional activated carbon for the purification of carcinogenic dyes laden water. The base material for kolakhar preparation was taken from the discarded banana stem waste to stimulate agricultural waste management. Methylene blue (MB) and basic fuchsin (BF) dyes were used as model cationic dyes. Characterization techniques like CHN, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX), and Brunauer-Emmett-Teller (BET) analysis of the prepared banana stem ash (BSA) reveal the presence of high inorganic contents and functional groups in the irregular, porous bioadsorbent with surface area 55.534 m2 g-1. Various regulating parameters studied to optimize the adsorption capacity of BSA were bioadsorbent dose (0.1-3 g/L), temperature (298-318 K), contact time (0-150 min), pH (2-9), and initial dye concentrations (10-40 mg/L). Non-linear kinetic models suggested Elovich for both MB and BF adsorption, while the non-linear isotherm model suggested Langmuir and Temkin for MB and BF adsorption, respectively, as best-fitted curves. The monolayer adsorption capacity (qm) for MB and BF was 15.22 mg/g and 24.08 mg/g at 318 K, respectively, with more than 95% removal efficiency for both dyes. The thermodynamic parameters studied indicated that the adsorption is spontaneous. The ∆H0 values of MB and BF adsorptions were 2.303 kJ/mol (endothermic) and - 29.238 kJ/mol (exothermic), respectively.


Subject(s)
Coloring Agents , Environmental Monitoring , Rosaniline Dyes , Adsorption , Agriculture , Cations , Methylene Blue
6.
Environ Monit Assess ; 195(7): 831, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37296255

ABSTRACT

Petrochemical contamination has been one of the significant causes of pollution all over the world. The upper Assam of Northeast India has been known for its oil industries and their contribution to India's economy. With tremendous oil production, an adequate amount of petroleum contamination is also observed. Several works have been furnished in the oilfields of Assam; however, the knowledge of heavy metal contamination and hydrocarbon pollution in nearby water bodies and soil, along with risk assessment and statistical validation in the vicinity of the Geleky oilfield of Sibsagar district of Assam, is still limited. The study also reveals native potential phytoremediators that can uptake heavy metals and hydrocarbons to help clean the environment through a greener approach. The presence of aromatic hydrocarbon derivatives in water, soil, plants, and sludge samples, including groundwater, is an alarming concern due to their high toxicity to the surrounding ecosystem and potential threat to the groundwater system. The Principal Component Analysis (PCA) further corroborates the significant and common origin of the heavy metals and total petroleum hydrocarbon (TPH), which inclines toward the oil exploration activities in the nearby oilfield. Among all the six plant species studied, Colocasia esculenta proved to be a noteworthy phytoremediator of both heavy metals and TPH, having an uptake efficiency of 78% of Zn, 46% of Pb, and 75% of Fe, and 70% of TPH. The study provides baseline information to help us identify future threats and suitable endemic phytoremediators, which can be advantageous for future remediation.


Subject(s)
Metals, Heavy , Petroleum Pollution , Petroleum , Soil Pollutants , Oil and Gas Fields , Petroleum/analysis , Water/analysis , Soil , Ecosystem , Environmental Monitoring , Hydrocarbons/analysis , Plants , Metals, Heavy/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Petroleum Pollution/analysis
7.
ACS Omega ; 8(17): 15141-15151, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37151526

ABSTRACT

Heavy-metal pollution is a persevering environmental menace, which demands the necessity of its removal by green and ecofriendly adsorbents. To combat this problem, discarded plant biomass can be used as an efficient substitute. Herein, a comparative study has been highlighted for the removal of Pb2+ ions using Euryale ferox Salisbury seed coat and its activated carbon, which is prepared by a first-time-reported activating agent that is a novel and non-hazardous bioresource. The batch investigation revealed a 99.9% removal efficiency of Pb(II) by the activated carbon compared to Euryale ferox Salisbury seed coat, which shows only an 89.5% removal efficiency at neutral pH. The adsorption mechanism is mainly a multilayered process, which involves electrostatic, van der Waals, and hydrogen bonding interactions. The adsorption equilibrium, kinetic, and thermodynamic studies were examined for the biosorbents, which revealed the adsorption process to be feasible, spontaneous, and exothermic with both physisorption and chemisorption adsorption mechanisms. The desorption study asserted the reusability of both the biosorbents to a maximum of three cycles.

8.
Environ Sci Pollut Res Int ; 30(30): 74459-74484, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37219770

ABSTRACT

Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. Thus, intertwining nano- and bioremediation can lead to a suitable technology termed 'nanobioremediation' expected to nullify bioremediation's drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobioremediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying crude petroleum oil-contaminated sites.


Subject(s)
Environmental Restoration and Remediation , Petroleum Pollution , Petroleum , Soil Pollutants , Biodegradation, Environmental , Prospective Studies , Artificial Intelligence , Soil Pollutants/analysis , Soil/chemistry , Nanotechnology , Soil Microbiology , Hydrocarbons
9.
Environ Pollut ; 328: 121578, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37028789

ABSTRACT

Petroleum refineries generate oily sludge that contains hazardous polycyclic aromatic hydrocarbons (PAH), and hence, its proper disposal is of foremost concern. Analysis of the physicochemical properties and functions of indigenous microbes of the contaminated sites are essential in deciding the strategy for bioremediation. This study analyses both parameters at two geographically distant sites, with different crude oil sources, and compares the metabolic capability of soil bacteria with reference to different contamination sources and the age of the contaminated site. The results indicate that organic carbon and total nitrogen derived from petroleum hydrocarbon negatively affect microbial diversity. Contamination levels vary widely on site, with levels of PAHs ranging from 5.04 to 1.66 × 103 µg kg-1 and 6.20 to 5.64 × 103 µg kg-1 in Assam and Gujarat sites respectively, covering a higher proportion of low molecular weight (LMW) PAHs (fluorene, phenanthrene, pyrene, and anthracene). Functional diversity values were observed to be positively correlated (p < 0.05) with acenaphthylene, fluorene, anthracene, and phenanthrene. Microbial diversity was the highest in fresh oily sludge which decreased upon storage, indicating that immediate bioremediation, soon after its generation, would be beneficial. Improvement in the bio-accessibility of hydrocarbon compounds by the treatment of biosurfactant produced by a (soil isolate/isolate) was demonstrated., with respect to substrate utilization.


Subject(s)
Microbiota , Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Petroleum/analysis , Sewage/microbiology , Soil , Polycyclic Aromatic Hydrocarbons/analysis , Phenanthrenes/metabolism , Fluorenes/analysis , Hydrocarbons/metabolism , Anthracenes/analysis , Biodegradation, Environmental , Soil Pollutants/analysis , Soil Microbiology
10.
Environ Monit Assess ; 195(1): 26, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36278964

ABSTRACT

Hazardous dyes used in textile industries are considered high-risk pollutants to the environment. The raw as well as acid-treated Plumeria alba (white frangipani) leaf powder (WFLP and SWFLP) were used for the adsorption of methylene blue (MB) that is available in industrial wastewaters following the batch adsorption technique. The characterizations of adsorbents were done by FTIR, SEM, EDX, TGA, and zeta potential parameters. The adsorption was considered for the effects of temperature, initial dye concentration, solution pH, adsorbent dosage, and contact time. The experimental results obtained in the adsorption of MB were examined by nonlinear error functions like chi-square (χ2), ARE, and MPSD for three isotherm models: Langmuir, Freundlich, and Temkin. The maximum monolayer adsorption capacity, qmax (mg/g), was 45.45 mg/g for raw WFLP and 250 mg/g for SWFLP. The adsorbents fitted to the pseudo-second-order kinetic model (R2 = 0.99) using the experimental data of batch adsorption. The thermodynamic studies explained the spontaneity and nature of adsorption for raw and acid-treated adsorbents. The batch experimental results and characterizations of the adsorbents revealed that the selected adsorbents would be the best adsorbents for the removal of MB from the wastewater solution.


Subject(s)
Apocynaceae , Water Pollutants, Chemical , Water Purification , Methylene Blue/chemistry , Kinetics , Wastewater , Biomass , Powders , Water Pollutants, Chemical/chemistry , Environmental Monitoring , Adsorption , Thermodynamics , Coloring Agents/chemistry , Acids , Hydrogen-Ion Concentration , Water Purification/methods
11.
Food Chem X ; 12: 100173, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34917927

ABSTRACT

This study reported the content of selected metals, viz. cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb) and zinc (Zn) as well as non-carcinogenic risks of orthodox green tea and CTC (crush, tear and curl) green tea (Camellia sinensis L.) in India. Results revealed that significantly higher amount of Cr (1.26-10.48 mg kg-1), Cu (13.40-22.73 mg kg-1), Fe (54.14-99.65 mg kg-1), Ni (3.43-7.09 mg kg-1), and Zn (25.04-38.04 mg kg-1) in CTC green tea than orthodox one. However, no definite trend was observed for Cd and Pb, with overall contents ranged from 6.68 to 23.32 µg kg-1 and 0.04 to 0.13 mg kg-1, respectively. The extraction of the elements in tea infusion was higher for CTC green tea. The hazard quotient and hazard index values of all the studied metals were less than unity, confirming no significant health effect for consumers assuming drinking of 750 mL tea infusion prepared from 10 g green tea per day per person.

12.
RSC Adv ; 11(19): 11457-11467, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423631

ABSTRACT

Tea (Camellia sinensis L.) leaves undergo complex chemical transformations during black tea processing. However, the dynamic chemical changes during tea processing have not been explored in popular cultivars of North East India. In this study, changes in catechins, caffeine, total polyphenol (TP) and formation of theaflavins were examined throughout the different stages of CTC (curl, tear and crush) black tea processing based on UPLC metabolomic analysis along with antioxidant activity for eight cultivars viz. S.3A/3, TV1, TV7, TV9, TV17, TV22, TV23 and TV25. The results demonstrated that the most prolific changes were observed after complete maceration of tea leaves. The total catechin, (-)-epigallocatechin gallate and (-)-epicatechin gallate levels decreased by 96, 97 and 89%, respectively as the processing progressed from fresh leaves to black tea. The TP level decreased by 26 to 37% throughout the processing path. The caffeine content increased by 18% during processing. The total theaflavin reached the highest level at 20 min of fermentation and then decreased by 13 to 36% at 40 min. Cultivar TV23 and S.3A/3 had a high content of total theaflavin with 17.9 and 16.9 mg g-1, respectively. The antioxidant activity was observed to be decreased by 31% for the black tea as compared to fresh leaves. It is also observed that the total phenolic content exerted a greater effect on antioxidant activity rather than catechins and theaflavins. This study provides an insightful observation of black tea processing which will immensely help in improving the quality of processed tea.

13.
Sci Rep ; 10(1): 20096, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208840

ABSTRACT

Murraya koenigii (MK) leaf being a rich source of bioactive secondary metabolites has received inordinate attention in drug development research. Formation of secondary plant metabolite(s) in medicinal plants depends on several factors and in this study the cause of variation in bioavailability and content of a vital bioactive phytochemical, mahanine in the MK leaves from different geographical locations of varying soil properties and weather parameters was determined. Accordingly, MK leaves and soil samples around the plant base in quintuplicate from each site across five states of India at similar time point were collected. Mahanine content was determined and compared among samples from different regions. The quantitative analysis data comprised that MK-leaves of southern part of India contains highest amount of mahanine, which is 16.9 times higher than that of MK-leaves of north-eastern part of India (which measured as the lowest). The results suggested that pH, conductivity and bacterial populations of the soil samples were positively correlated with mahanine content in the MK-leaves. For examples, the average soil pH of the southern India sites was in basic range (8.8 ± 0.6); whereas that of the north-east India sites was in slightly acidic ranges (6.1 ± 0.5) and mean soil conductivity value for the north east India soils was 78.3 ± 16.3 µS/cm against mean value of 432.4 ± 204.5 µs/cm for south India soils. In conclusion, this study proclaims that higher level of bioactive phytochemical, mahanine in MK leaves depending upon geographical location, weather suitability and soil's physiochemical and microbial parameters of its cultivation sites.


Subject(s)
Carbazoles/metabolism , Murraya/chemistry , Phytochemicals/metabolism , Plant Extracts/metabolism , Plant Leaves/chemistry , Soil/chemistry , Carbazoles/isolation & purification , India , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Weather
14.
RSC Adv ; 10(4): 1925-1936, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-35494585

ABSTRACT

A cost-effective and catalyst-free approach for the treatment of oil field formation water has been extensively explored in this work. ZnO NPs were synthesized via an electrochemical reaction using hydrogen peroxide as the electrolyte. The XRD and TEM analysis depicted the high purity and wurtzite hexagonal structure of ZnO NPs with an average size of 35 ± 5 nm. TGA data showed the thermal stability of the synthesized material up to 750 °C. The efficiency of the removal of hydrocarbons from formation water by the combination of electrochemical reaction and synthesized ZnO NPs was monitored by GC-MS and FTIR. GC-MS analysis revealed that out of 214 compounds (present in the untreated sample), a total of 131 compounds were adsorbed by ZnO NPs. Further, the absence of any compound in the chromatogram of the treated sample attests that the rest of the compounds were completely or partially degraded by electrochemical degradation reaction. Moreover, this technique overcomes some of the important drawbacks of the existing techniques in the area of electrochemical research, such as the generation of toxic byproducts, unwanted side reactions, and involvement of hazardous chemicals.

15.
RSC Adv ; 10(54): 32833-32842, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-35516505

ABSTRACT

The present study compares the effects of two green tea processing techniques, viz. orthodox and CTC (curl, tear and crush) on the quality parameters and sensory profiles under the geographical and climatic conditions of Assam, India. The results showed that CTC green tea infusions had 13.3, 7.5, 7.1, 9.8, 5.4, 17.3, 17.1 and 18.6% more total polyphenol, total catechin, (-)-epigallocatechin-3-gallate (EGCG), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), (-)-epicatechin (EC), water extract and theanine level, respectively than the infusions prepared from orthodox green tea. The sensory evaluation preferred the orthodox over CTC processing mode. Risk assessment with daily consumption of five cups (10 g) of green tea reveals that the EGCG level is free from the risk of hepatotoxicity and caffeine will not inflict any health hazard.

16.
Environ Pollut ; 250: 969-980, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31085484

ABSTRACT

The sediment characterisation of wetlands belonging to the Northeastern Region of India particularly regarding the assessment of sediment carbon stock is very scanty. The presently available literature on the wetlands cannot be employed as a common model for managing the wetlands of the Northeastern Region of India as wetlands are a sensitive ecosystem with a different origin or endogenous interventions. Thereby, this research was conducted on Deepor Beel for investigating the spatial and seasonal variation of sediment parameters, the relationship between the parameters and pollution status of the wetland. Results revealed that the study area is of an acidic nature with a sandy clay loam type texture. Organic carbon, total nitrogen and available nitrogen were higher in sediments in the monsoon period. The mean stock of the sediment carbon pool of Deepor Beel is estimated to be 2.5 ±â€¯0.7 kg m-2. The average non-residual fraction percentage (63.2%) of Pb was higher than the residual fraction. Zn content ∼490 mg kg-1 exceeding its effect range medium (ERM) was determined to suggest frequent biological adverse effects. Highest metal enrichment factor (EF) values were shown by Zn and Pb, which ranged between 78 and 255. Risk assessment code (RAC) values of Pb between 21 and 29% indicated its high bio-accessibility risk. Pearson's coefficient matrix revealed a low degree of positive correlation between organic carbon content and metal concentration. Principal component analysis revealed that the first component comprising of EC, basic cations and metals accounted for 62.3% of variance while the second component (OM, OC, TN, AN, AP) and the third component (pH) accounted for 21.8% and 7.0% of the variance, respectively. The present study revealed the adverse impact of human inputs on the Deepor Beel quality status.


Subject(s)
Environmental Monitoring/methods , Fresh Water/chemistry , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Humans , India , Seasons , Wetlands
17.
Front Microbiol ; 8: 170, 2017.
Article in English | MEDLINE | ID: mdl-28223975

ABSTRACT

A novel polymeric bioflocculant was produced by a bacterium utilizing degradation of n-hexadecane as the energy source. The bioflocculant was produced with a bioflocculating activity of 87.8%. The hydrocarbon degradation was confirmed by gas chromatography-mass spectrometry analysis and was further supported with contact angle measurements for the changes in hydrophobic nature of the culture medium. A specific aerobic degradation pathway followed by the bacterium during the bioflocculant production and hydrocarbon utilization process has been proposed. FT-IR, SEM-EDX, LC/MS, and 1H NMR measurements indicated the presence of carbohydrates and proteins as the major components of the bioflocculant. The bioflocculant was characterized for its carbohydrate monomer constituents and its practical applicability was established for removing the heavy metals (Ni2+, Zn2+, Cd2+, Cu2+, and Pb2+) from aqueous solutions at concentrations of 1-50 mg L-1. The highest activity of the bioflocculant was observed with Ni2+ with 79.29 ± 0.12% bioflocculation efficiency.

18.
Environ Monit Assess ; 189(2): 62, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28102496

ABSTRACT

Aliphatic-aromatic hydrocarbons and heavy metals (Cd, Cu, Co, Cr, Ni, Pb and Zn) were estimated in soil and leaf samples of Machilus bombycina (host plant of Antheraea assama silkworm) plantation along with atmospheric benzene, toluene and xylene (BTX) concentration near the oil exploration region of upper Assam, India, during the pre-monsoon and post-monsoon periods in six different sites. The results revealed higher aliphatic-aromatic hydrocarbons (ranging from 26.55 to 59.42 mg kg-1) and heavy metal contaminations in all the six soil sampling sites during the pre-monsoon period while the trend was the opposite for the plant leaves. Polyaromatic hydrocarbons (9.85 mg kg-1) were found in one soil sampling site near an abandoned oil well. The lead concentration in the soil showed values from 14.36 ± 1.5 to 96.5 ± 5.6 mg kg-1 and found to be higher than the WHO limit in most of the samples. The aliphatic-aromatic hydrocarbon m-xylene was also found in M. bombycina plant leaves which could be traced due to crude oil. Cd and Pb concentrations in leave samples were found to be higher than the maximum allowable limit of 0.3 and 5.3 mg kg-1, respectively. Principal component analysis of hydrocarbons in soil and leaves showed different clusters during the pre-monsoon and post-monsoon periods. The crude protein and total carbohydrate contents in the leaves were lower than those of uncontaminated samples which are an indication of a major disturbance to overall growth of plants. BTX concentration was found in the range of 119-198 µg m-3 which indicates that atmospheric contamination in the studied area is causing the death of A. assama larvae.


Subject(s)
Extraction and Processing Industry , Lauraceae/chemistry , Petroleum Pollution , Silk , Soil Pollutants/analysis , Animals , Bombyx , Environmental Monitoring/methods , Hydrocarbons/analysis , India , Lead/analysis , Metals, Heavy/analysis , Oil and Gas Fields , Petroleum/analysis , Plants/metabolism , Soil/chemistry , Xylenes/analysis
19.
Bull Environ Contam Toxicol ; 98(1): 120-126, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27896384

ABSTRACT

The purpose of this study was to determine whether total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) present in crude oil contaminated sites are transferred to roots, shoots and finally the grains of rice crops (Oryza sativa L.) grown in those sites. Soil was artificially contaminated with crude oil at concentrations of 0, 1000, 5000, 10,000, and 15,000 mg/kg, followed by planting of rice seedlings. After harvest, TPH in plant samples were measured, and it was determined that the uptake of TPH by the plants gradually increased as the concentration of oil in soil increased. Further, from GC-MS analysis, it was observed that PAHs including naphthalene and phenanthrene bioaccumulated in rice plant parts. Vital physico-chemical properties of soil were also altered due to crude oil contamination. Our study revealed that rice plants grown in crude oil polluted sites can uptake TPH including PAHs, thus emphasising the importance of prior investigation of soil condition before cultivation of crops.


Subject(s)
Oryza/metabolism , Petroleum Pollution/analysis , Petroleum/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Naphthalenes/analysis , Oryza/chemistry , Oryza/growth & development , Phenanthrenes/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis
20.
Environ Sci Pollut Res Int ; 23(4): 3310-21, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26490906

ABSTRACT

Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.


Subject(s)
Air Pollutants/analysis , Bombyx/metabolism , Hydrocarbons/analysis , Metals, Heavy/analysis , Particulate Matter/analysis , Silk/metabolism , Air Pollutants/toxicity , Animals , Bombyx/drug effects , Hydrocarbons/toxicity , India , Metals, Heavy/toxicity , Oil and Gas Fields , Particulate Matter/toxicity , Petroleum/adverse effects , Petroleum/analysis , Plants , Seasons , Silk/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...