Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Reprod Fertil Dev ; 32(10): 893-902, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32586419

ABSTRACT

The PDZ-binding kinase (PBK) protein is localised exclusively in spermatogenic cells, such as spermatogonia, spermatocytes and round spermatids, of the adult testis. However, its role in male fertility remains unknown. Analysis of adult Pbk-knockout (KO) male mice showed no significant difference in the weight of the testes, epididymis and seminal vesicle compared with adult wild-type (WT) mice. There were no significant differences in testis morphology, tubule diameter and the number of offspring born to females mated with KO or WT male mice. Sperm number, motility and morphology did not differ significantly between KO and WT mice. The oocyte fertilisation rate and embryo development following IVF were comparable between groups fertilised using spermatozoa from KO versus WT mice (P>0.05). Further analysis revealed that the phosphorylation of the mitogen-activated protein kinases (MAPKs) p38 kinase, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinases was dysregulated in the testis of KO mice. In conclusion, Pbk-KO male mice are fertile and their spermatozoa and testis do not show any morphological and functional abnormalities despite the dysregulated phosphorylation of MAPKs. It is likely that functional redundancy of PBK and overlapping substrate specificities of the MAPK superfamily compensated for the loss of PBK from the testis.


Subject(s)
Fertility/physiology , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/physiology , Animals , Female , Fertilization , Male , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase Kinases/deficiency , Mitogen-Activated Protein Kinases/metabolism , Oocytes/physiology , Organ Size , Phosphorylation , Spermatozoa/enzymology , Spermatozoa/physiology , Testis/anatomy & histology , Testis/enzymology
2.
Sci Rep ; 7(1): 2605, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572601

ABSTRACT

Ectopic xenografting of testis is a feasible option for preservation of male fertility and angiogenesis plays a pivotal role in xenograft survival and functionality. When compared to immature testis, the adult testis is unable to establish functional xenografts due to potentially lower efficiency to induce angiogenesis. The precise molecular mechanism, however, remains elusive. In the present study, we compared adult and immature testis xenografts for survival, maturation and germ cell differentiation. Further, we evaluated differential expression of angiogenesis signalling-specific proteins in adult and immature testis and their xenografts. Results showed that adult testis xenografts degenerated whereas immature testis xenografts survived and established spermatogenesis with the production of haploid germ cells. Protein expression analysis demonstrated that immature testis xenografts were able to establish angiogenesis either through eNOS activation via VEGF and PI3K/AKT or through EGFR-mediated STAT3 pathway. The role of ERK/MAPK pathway in xenograft angiogenesis was ruled out. The absence or reduced expression of angiogenesis-specific proteins in adult testis and its xenografts possibly resulted in poor angiogenesis and in their subsequent degeneration. This study provides insight into angiogenesis mechanism that can be utilized to augment testis xenografting efficiency.


Subject(s)
Infertility, Male/therapy , Testis/physiology , Transplantation, Heterologous , Adult , Animals , Cell Differentiation , ErbB Receptors/metabolism , Graft Survival , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Physiologic , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Rats , Rats, Wistar , Signal Transduction , Spermatogenesis , Testis/transplantation , Vascular Endothelial Growth Factor A/metabolism
3.
Cryobiology ; 74: 103-109, 2017 02.
Article in English | MEDLINE | ID: mdl-27890704

ABSTRACT

Several species of cervids are currently classified as threatened or endangered due to a rapid decline in their populations. Sperm cryopreservation, in association with assisted reproductive technologies, can find application for the conservation of endangered cervids. In cases of unsuccessful sperm retrieval through other means prior to the death of the animal, adult testis is the only source of sperm. Recovery of viable sperm from adult testes depends on the effective preservation of testicular tissues through optimization of cryopreservation protocols. The present study evaluated combinations of 10% dimethyl sulfoxide (DMSO) with 0% or 80% fetal bovine serum (FBS) and 20% DMSO with 0 or 20% FBS for the cryopreservation of testicular tissues of three adult cervids using uncontrolled slow freezing protocol. The cryopreserved testis was compared to chilled tissue without cryoprotectants. Results revealed that testicular tissues of barking deer cryopreserved in 20% DMSO (D20) had all the analyzed 7 parameters (number of TNP1-, PRM2 and acrosin-expressing cells/tubule and, the number of viable, morphologically normal, acrosome intact, Annexin V-negative sperm) comparable to the chilled testis. However, testicular tissues of sambhar and hog deer cryopreserved only in D20S20 had 5 of 7 parameters comparable to the chilled testis. In conclusion, D20 is acceptable for cryopreservation of barking deer and D20S20 for sambar and hog deer testes.


Subject(s)
Cryopreservation/veterinary , Cryoprotective Agents/pharmacology , Deer , Dimethyl Sulfoxide/pharmacology , Semen Preservation/veterinary , Testis/physiology , Acrosin/metabolism , Acrosome/physiology , Animals , Chromosomal Proteins, Non-Histone/metabolism , Cryopreservation/methods , Male , Protamines/metabolism , Semen Preservation/methods
4.
Cryobiology ; 73(3): 356-366, 2016 12.
Article in English | MEDLINE | ID: mdl-27693391

ABSTRACT

Cryopreservation of immature testis is a feasible approach for germplasm preservation of male animals. Combinations of dimethyl sulfoxide (DMSO) and foetal bovine serum (FBS) are used for testis cryopreservation. However, an alternative to FBS is needed, because FBS is expensive. Buffalo ocular fluid (BuOF), a slaughter house by-product, could be an economical option. The objective of the present study was to assess whether BuOF can replace FBS for cryopreservation of immature mouse (Mus musculus), rat (Rattus norvegicus), and buffalo (Bubalus bubalis) testes. Results showed that rodent and buffalo testes frozen in DMSO (10% for rodents and 20% for buffalo) with 20% FBS or BuOF had similar numbers of viable and DNA-damaged cells (P > 0.05). The expression of cell proliferation- (PCNA) and apoptosis-specific proteins (Annexin V and BAX/BCL2 ratio) were also comparable in mouse and buffalo testes frozen in DMSO with FBS or BuOF (P > 0.05). Interestingly, rat testis frozen in DMSO with BuOF had lower expression of Annexin V protein than testis frozen in DMSO with FBS (P < 0.05). The percentage of meiotic germ cells (pachytene-stage spermatocytes) in xenografts from testis frozen either in DMSO with BuOF or FBS did not significantly differ in rats or buffalo (P > 0.05). These findings provide evidence that BuOF has potential to replace FBS for cryopreservation of immature rodent and buffalo testis. Further investigation is needed to explore whether BuOF can replace FBS for testis cryopreservation of other species.


Subject(s)
Body Fluids , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Eye , Testis/drug effects , Animals , Buffaloes , Cattle , Cell Proliferation , Dimethyl Sulfoxide/pharmacology , Freezing , Male , Mice , Rats , Transplantation, Heterologous
5.
Reprod Fertil Dev ; 28(7): 872-885, 2016 Jun.
Article in English | MEDLINE | ID: mdl-25482277

ABSTRACT

Buffalo calves have a high mortality rate (~80%) in commercial dairies and testis cryopreservation can provide a feasible option for the preservation of germplasm from immature males that die before attaining sexual maturity. The aim of the present study was to evaluate combinations of 10 or 20% dimethylsulfoxide (DMSO) with 0, 20 or 80% fetal bovine serum (FBS) for cryopreservation of immature buffalo testicular tissues, subjected to uncontrolled slow freezing. Tissues cryopreserved in 20% DMSO with 20% FBS (D20S20) showed total, tubular and interstitial cell viability, number of early apoptotic and DNA-damaged cells, surviving germ and proliferating cells and expression of testicular cell-specific proteins (POU class 5 homeobox (POU5F1), vimentin (VIM) and actin α2 (ACTA2)) similar to that of fresh cultured control (FCC; P>0.05). Expression of cytochrome P450, family 11, subfamily A (CYP11A1) protein and testosterone assay showed that only tissues cryopreserved in D20S20 had Leydig cells and secretory functions identical to that of FCC (P>0.05). High expression of superoxide dismutase2 (SOD2), cold-inducible RNA-binding protein (CIRBP) and RNA-binding motif protein3 (RBM3) proteins in cryopreserved tissues indicated involvement of cell signalling pathways regulating cellular protective mechanisms. Similarity in expression of pro-apoptosis proteins transcription factor tumour protein P53 (TP53) and BCL2-associated X protein (BAX) in D20S20 cryopreserved tissues to that of FCC (P>0.05) suggested lower apoptosis and DNA damage as key reasons for superior cryopreservation.


Subject(s)
Buffaloes , Cryopreservation/veterinary , Cryoprotective Agents/chemistry , Testis/physiology , Animals , Dimethyl Sulfoxide/chemistry , Freezing , Male
6.
Reprod Med Biol ; 15(4): 235-251, 2016 10.
Article in English | MEDLINE | ID: mdl-29259441

ABSTRACT

Fertility preservation is an area of immense interest in today's society. The most effective and established means of fertility preservation is cryopreservation of gametes (sperm and oocytes) and embryos. Gonadal cryopreservation is yet another means for fertility preservation, especially if the gonadal function is threatened by premature menopause, gonadotoxic cancer treatment, surgical castration, or diseases. It can also aid in the preservation of germplasm of animals that die before attaining sexual maturity. This is especially of significance for valuable, rare, and endangered animals whose population is affected by high neonatal/juvenile mortality because of diseases, poor management practices, or inbreeding depression. Establishing genome resource banks to conserve the genetic status of wild animals will provide a critical interface between ex-situ and in-situ conservation strategies. Cryopreservation of gonads effectively lengthens the genetic lifespan of individuals in a breeding program even after their death and contributes towards germplasm conservation of prized animals. Although the studies on domestic animals are quite promising, there are limitations for developing cryopreservation strategies in wild animals. In this review, we discuss different options for gonadal tissue cryopreservation with respect to humans and to laboratory, domestic, and wild animals. This review also covers recent developments in gonadal tissue cryopreservation and transplantation, providing a systematic view and the advances in the field with the possibility for its application in fertility preservation and for the conservation of germplasm in domestic and wild species.

7.
PLoS One ; 10(7): e0131291, 2015.
Article in English | MEDLINE | ID: mdl-26135924

ABSTRACT

Cryostorage is of immense interest in biomedical research, especially for stem cell-based therapies and fertility preservation. Several protocols have been developed for efficient cryopreservation of cells and tissues, and a combination of dimethyl sulfoxide (DMSO) and fetal bovine serum (FBS) is commonly used. However, there is a need for an alternative to FBS because of ethical reasons, high cost, and risk of contamination with blood-borne diseases. The objective of the present study was to examine the possibility of using buffalo (Bubalus bubalis) ocular fluid (BuOF) to replace FBS in cryomedia. Frozen-thawed cells, which were cryopreserved in a cryomedia with BuOF, were assessed for viability, early and late apoptosis, and proliferation. Three cell lines (CHO, HEK, and C18-4), mouse embryonic stem (mES) cells, and primary cells, such as mouse embryonic fibroblast (MEF) cells, human peripheral blood mononuclear cells (hPBMCs), and mouse bone marrow cells (mBMCs), were cryopreserved in cryomedia containing 10% DMSO (D10) with 20% FBS (D10S20) or D10 with 20% BuOF (D10O20). For all three cell lines and mES cells cryopreserved in either D10S20 or D10O20, thawed cells showed no difference in cell viability or cell recovery. Western blot analysis of frozen-thawed-cultured cells revealed that the expression of Annexin V and proliferating cell nuclear antigen (PCNA) proteins, and the ratio of BAX/BCL2 proteins were similar in all three cell lines, mES cells, and hPBMCs cryopreserved in D10S20 and D10O20. However, initial cell viability, cell recovery after culture, and PCNA expression were significantly lower in MEF cells, and the BAX/BCL2 protein ratio was elevated in mBMCs cryopreserved in D10O20. Biochemical and proteomic analysis of BuOF showed the presence of several components that may have roles in imparting the cryoprotective property of BuOF. These results encourage further research to develop an efficient serum-free cryomedia for several cell types using BuOF.


Subject(s)
Body Fluids/chemistry , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Eye/chemistry , Animals , Annexin A5/genetics , Annexin A5/metabolism , Apoptosis/drug effects , Biomarkers/metabolism , Buffaloes , CHO Cells , Cell Proliferation/drug effects , Cell Survival/drug effects , Cricetulus , Cryoprotective Agents/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression , HEK293 Cells , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
8.
Indian J Exp Biol ; 53(5): 305-12, 2015 May.
Article in English | MEDLINE | ID: mdl-26040028

ABSTRACT

Spermatogonia, the adult germ cells that initiate spermatogenesis in mammalian testis, are capable of dividing both mitotically and meiotically. Isolation and preservation of spermatogonia helps in preserving genetic pool of endangered animals. In this context, identification of marker(s) that can distinguish spermatogonia from other cells in testis gains significance. Here, we examined the expression of ubiquitin carboxyl-terminal esterase L1 (UCHL1) gene and protein in the testes of several mammals, including highly endangered species. Semi-quantitative-reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed presence of UCHL1 amplicon of 442 bp in all the 18 mammals studied. Nucleotide sequence analysis of these amplicons and their predicted protein sequences revealed 88-99% and 95-100% homology with available human UCHL1 and UCHL1 sequences of other available species in the GenBank, respectively. Western blot analysis showed that UCHL1 protein size was unique in all wild mammals. Immunohistology results confirmed UCHL1 expression in the spermatogonia/gonocytes in testes of several mammals belonging to eight distinct families including highly endangered Felidae, Canidae and Cercopithecoidae. These findings suggest that UCHL1 expression is conserved in the mammalian testis, and could be used as a specific marker for gonocytes/spermatogonia for developing male germ-cell based conservation techniques.


Subject(s)
Mammals/genetics , RNA, Messenger/biosynthesis , Spermatogenesis/genetics , Ubiquitin Thiolesterase/biosynthesis , Animals , Cell Differentiation/genetics , Conserved Sequence , Endangered Species , Gene Expression Regulation, Developmental , Humans , Male , RNA, Messenger/genetics , Testis/metabolism , Ubiquitin Thiolesterase/genetics
9.
Theriogenology ; 83(4): 625-33, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25467768

ABSTRACT

Death of immature animals is one of the reasons for the loss of genetic diversity of rare and endangered species. Because sperm cannot be collected from immature males, cryobanking of testicular tissue combined with testis xenografting is a potential option for conservation. The objective of this study was to evaluate the establishment of spermatogenesis in cryopreserved immature testicular tissues from Indian spotted mouse deer (Moschiola indica) after ectopic xenografting onto immunodeficient nude mice. Results showed that testis tissues that were frozen in cryomedia containing either 10% DMSO with 80% fetal bovine serum (D10S80) or 20% DMSO with 20% fetal bovine serum (D20S20) had significantly more (P < 0.01) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeled positive interstitial cells when compared with fresh testis tissues (46.3 ± 3.4 and 51.9 ± 4.0 vs. 22.8 ± 2.0). Xenografted testicular tissues showed degenerated seminiferous tubules 24 weeks after grafting in testes that had been cryopreserved in D20S20; alternatively, pachytene spermatocytes were the most advanced germ cells in testes that were cryopreserved in D10S80. Proliferating cell nuclear antigen staining confirmed the proliferative status of spermatocytes, and the increases in tubular and lumen diameters indicated testicular maturation in xenografts. However, persistent anti-Müllerian hormone staining in Sertoli cells of xenografts revealed incomplete testicular maturation. This study reports that cryopreserved testis tissue that had been xenografted from endangered animals onto mice resulted in the establishment of spermatogenesis with initiation of meiosis. These findings are encouraging for cryobanking of testicular tissues from immature endangered animals to conserve their germplasm.


Subject(s)
Cryopreservation/veterinary , Deer/physiology , Spermatogenesis/physiology , Testis/physiology , Transplantation, Heterologous/veterinary , Animals , Conservation of Natural Resources , Endangered Species , Male , Mice , Sexual Maturation
10.
Bioresour Technol ; 101(13): 4767-74, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19944601

ABSTRACT

Rice straw is an attractive lignocellulosic material for bioethanol production since it is one of the most abundant renewable resources. It has several characteristics, such as high cellulose and hemicelluloses content that can be readily hydrolyzed into fermentable sugars. But there occur several challenges and limitations in the process of converting rice straw to ethanol. The presence of high ash and silica content in rice straw makes it an inferior feedstock for ethanol production. One of the major challenges in developing technology for bioethanol production from rice straw is selection of an appropriate pretreatment technique. The choice of pretreatment methods plays an important role to increase the efficiency of enzymatic saccharification thereby making the whole process economically viable. The present review discusses the available technologies for bioethanol production using rice straw.


Subject(s)
Biotechnology/methods , Ethanol/chemistry , Oryza/metabolism , Triticum/metabolism , Biomass , Carbohydrates/chemistry , Cellulose/chemistry , Electrons , Enzymes/chemistry , Fermentation , Hydrolysis , Kinetics , Microwaves , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...