Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38668814

ABSTRACT

In the past few decades, the pressure of higher food production to satisfy the demand of ever rising population has inevitably increased the use synthetic agrochemicals which have deterioration effects. Biostimulants containing beneficial microbes (single inoculants and microbial consortium) were found as an ideal substitute of synthetic chemical fertilizers. In recent years, microbial consortium is known as a better bioinoculant in comparison to single inoculant bioformulation because of multifarious plant growth-promoting advantages. Looking at the advantageous effect of consortium, in present investigation, different bacteria were isolated from rhizospheric soil and plant samples collected from the Himalayan mountains on the green slopes of the Shivaliks, Himachal Pradesh. The isolated bacteria were screened for nitrogen (N) fixation, phosphorus (P) solubilization and potassium (K) solubilization plant growth promoting attributes, and efficient strains were identified through 16S rRNA gene sequencing and BLASTn analysis. The bacteria showing a positive effect in NPK uptake were developed as bacterial consortium for the growth promotion of eggplant crop. A total of 188 rhizospheric and endophytic bacteria were sorted out, among which 13 were exhibiting nitrogenase activity, whereas 43 and 31 were exhibiting P and K solubilization traits, respectively. The selected three efficient and potential bacterial strains were identified using 16S rRNA gene sequencing as Enterobacter ludwigii EU-BEN-22 (N-fixer; 35.68 ± 00.9 nmol C2H4 per mg protein per h), Micrococcus indicus EU-BRP-6 (P-solubilizer; 201 ± 0.004 mg/L), and Pseudomonas gessardii EU-BRK-55 (K-solubilizer; 51.3 ± 1.7 mg/mL), and they were used to develop a bacterial consortium. The bacterial consortium evaluation on eggplant resulted in the improvement of growth (root/shoot length and biomass) and physiological parameters (chlorophyll, carotenoids, total soluble sugar, and phenolic content) of the plants with respect to single culture inoculation, chemical fertilizer, and untreated control. A bacterial consortium having potential to promote plant growth could be used as bioinoculant for horticulture crops growing in hilly regions.

2.
Folia Microbiol (Praha) ; 69(1): 181-206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37747637

ABSTRACT

Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, ß-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.


Subject(s)
Ascomycota , Bacillus , Basidiomycota , Endophytes , Bacteria/genetics
3.
Curr Microbiol ; 80(5): 186, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37071197

ABSTRACT

Globally, man-made agrochemicals plays crucial role in plant growth promotion and boost crop yield. The agrochemicals overuse leaves the detrimental damage on the environment and humans. Biostimulants developed from single or multiple microbes (archaea, bacteria, and fungi) could be the appropriate alternative of agrochemical which sustains the agriculture as well as environment. In the present investigation, 93 beneficial bacteria associated with rhizospheric and endophytic region were isolated using diverse growth media. The isolated bacteria were screened for macronutrients availing traits including dinitrogen fixation, phosphorus and potassium solubilization. The bacterial consortium was developed using selected bacteria with multifunctional attributes and evaluated for the growth promotion of finger millet crop. Three potent NPK strains were identified as Erwinia rhapontici EU-FMEN-9 (N-fixer), Paenibacillus tylopili EU-FMRP-14 (P-solubilizer) and Serratia marcescens EU-FMRK-41 (K-solubilizer) using 16S rRNA gene sequencing and BLAST analysis. The developed bacterial consortium inoculation on finger millet resulted in the improvement of growth and physiological parameters with respect to chemical fertilizer and control. The compatible mixture of bacteria was found to have more ability to increase the growth of finger millet and it might be utilized as biostimulants for nutri-cereal crops growing in hilly regions.


Subject(s)
Eleusine , Humans , Eleusine/genetics , RNA, Ribosomal, 16S/genetics , Phenotype , Edible Grain
4.
Heliyon ; 8(4): e09326, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35520606

ABSTRACT

Bioinoculants provide better opportunity for ecological farming practices to improve the plant growth and enhanced crop productivity. Different types of bioinoculants containing single microbial culture and multiple microbial strains in single formulation could be used for agricultural sustainability. The different efficient microbial strain in single formulation as a consortium is an emerging trend in the present era. The present study deals with the isolation of nitrogen fixing, phosphorus and potassium solubilizing microbes from rhizospheric soil and root's internal tissues of different cereal/pseudocereal crops and their application as a microbial consortium for the growth of cereal crops. A total of 152 rhizospheric and endophytic bacteria were isolated and screened for the plant growth promoting (PGP) traits of nitrogen fixation, solubilization of phosphorus, and potassium. Among all the isolates, nine were found to fix nitrogen, fifteen and eleven exhibited phosphorus and potassium solubilization activity, respectively. Three selected efficient bacterial strains were identified using 16S rRNA gene sequencing as Erwinia sp. EU-B2SNL1 (N-fixer), Chryseobacterium arthrosphaerae EU-LWNA-37 (P-solubilizer), and Pseudomonas gessardii EU-MRK-19 (K-solubilizer). The inoculation of these three bacterial strains on barley crop as single inoculum and as microbial consortium enhanced the growth and physiological parameters including root/shoot length and biomass, chlorophyll, carotenoids, phenolics, flavonoids and soluble sugar content in comparison with untreated control. The microbial consortium was found to be more effective as compared to single inoculum. The microbial consortium of nitrogen fixing and mineral solubilizing microbes could be used as biofertilizer for plant growth and soil health.

5.
J Appl Microbiol ; 133(3): 1245-1272, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35588278

ABSTRACT

Agriculture faces challenges to fulfil the rising food demand due to shortage of arable land and various environmental stressors. Traditional farming technologies help in fulfilling food demand but they are harmful to humans and environmental sustainability. The food production along with agro-environmental sustainability could be achieved by encouraging farmers to use agro-environmental sustainable products such as biofertilizers and biopesticides consisting of live microbes or plant extract instead of chemical-based inputs. The eco-friendly formulations play a significant role in plant growth promotion, crop yield and repairing degraded soil texture and fertility sustainably. Mineral solubilizing microbes that provide vital nutrients like phosphorus, potassium, zinc and selenium are essential for plant growth and development and could be developed as biofertilizers. These microbes could be plant associated (rhizospheric, endophytic and phyllospheric) or inhabit the bulk soil and diverse extreme habitats. Mineral solubilizing microbes from soil, extreme environments, surface and internal parts of the plant belong to diverse phyla such as Ascomycota, Actinobacteria, Basidiomycota, Bacteroidetes, Chlorobi, Cyanobacteria, Chlorophyta, Euryarchaeota, Firmicutes, Gemmatimonadetes, Mucoromycota, Proteobacteria and Tenericutes. Mineral solubilizing microbes (MSMs) directly or indirectly stimulate plant growth and development either by releasing plant growth regulators; solubilizing phosphorus, potassium, zinc, selenium and silicon; biological nitrogen fixation and production of siderophores, ammonia, hydrogen cyanide, hydrolytic enzymes and bioactive compound/secondary metabolites. Biofertilizer developed using mineral solubilizing microbes is an eco-friendly solution to the sustainable food production system in many countries worldwide. The present review deals with the biodiversity of mineral solubilizing microbes, and potential roles in crop improvement and soil well-being for agricultural sustainability.


Subject(s)
Microbiota , Selenium , Agriculture , Bacteria/genetics , Bacteria/metabolism , Fertilizers/microbiology , Humans , Phosphorus/metabolism , Plants/microbiology , Potassium/metabolism , Soil , Soil Microbiology , Zinc/metabolism
6.
Folia Microbiol (Praha) ; 67(2): 203-232, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35122218

ABSTRACT

Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.


Subject(s)
Ascomycota , Mycobiome , Ascomycota/metabolism , Biodiversity , Ecosystem , Endophytes , Fungi/metabolism
7.
Microb Ecol ; 84(3): 643-675, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34647148

ABSTRACT

The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.


Subject(s)
Microbiota , Animals , Biodiversity , Agriculture , Plant Development , Crops, Agricultural
8.
Heliyon ; 8(12): e12579, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36601433

ABSTRACT

Microbes play crucial functions in maintaining the health and growth of the plants directly or indirectly by supplying nutrients. These microbes could be used as biofertilizers for the enhancement of soil health and growth of crops. In preset investigation, potential microbes from endophytic and rhizospheric region of Aegilops kotschyi growing in green slopes of Shivaliks, Himachal Pradesh were sorted out and screened for plant growth promoting attributes including phosphorus and potassium solubilization. The potential bacterial strains were identified through 16S rRNA gene sequencing and developed as microbial consortium for the plant growth of wheat and wild wheat relative Aegilops kotschyi. A total 125 isolates of bacteria were sorted out and among them 36 were found as P-solubilizers and 19 showed K-solubilization attribute and two highly potential bacterial strain were identified as Bacillus tropicus EU-ARP-44 (P-solubilizer; 270.5 ± 0.00 mg L-1) and B. megaterium EU-ARK-23 (K-Solubilizer; 51.3 ± 1.7 mg mL-1). The microbial consortium of Rahnella sp. strain EU-A3SNfb (N-fixer; MN294545), B. tropicus EU-ARP-44 (P-solubilizer) and B. megaterium EU-ARK-23 (K-solubilizer) evaluation in Aegilops kotschyi and wheat crop resulted in the enhancement of growth as well as physiological parameter including shoot/root length, fresh/dry weight and chlorophyll, carotenoid, total soluble sugar content, phenolic and flavonoid content as compared to un-inoculated control. Microbial consortium consisting of potential plant growth promoting (PGP) bacterial strains could be used as biofertilizer and bioinoculants in cereals crop growing in hilly region.

9.
Environ Sci Pollut Res Int ; 28(20): 24917-24939, 2021 May.
Article in English | MEDLINE | ID: mdl-33768457

ABSTRACT

Over the past few decades, the rapid development of agriculture and industries has resulted in contamination of the environment by diverse pollutants, including heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals. Their presence in the environment is of great concern due to their toxicity and non-biodegradable nature. Their interaction with each other and coexistence in the environment greatly influence and threaten the ecological environment and human health. Furthermore, the presence of these pollutants affects the soil quality and fertility. Physicochemical techniques are used to remediate such environments, but they are less effective and demand high costs of operation. Bioremediation is an efficient, widespread, cost-effective, and eco-friendly cleanup tool. The use of microorganisms has received significant attention as an efficient biotechnological strategy to decontaminate the environment. Bioremediation through microorganisms appears to be an economically viable and efficient approach because it poses the lowest risk to the environment. This technique utilizes the metabolic potential of microorganisms to clean up contaminated environments. Many microbial genera have been known to be involved in bioremediation, including Alcaligenes, Arthrobacter, Aspergillus, Bacillus, Burkholderia, Mucor, Penicillium, Pseudomonas, Stenotrophomonas, Talaromyces, and Trichoderma. Archaea, including Natrialba and Haloferax, from extreme environments have also been reported as potent bioresources for biological remediation. Thus, utilizing microbes for managing environmental pollution is promising technology, and, in fact, the microbes provide a useful podium that can be used for an enhanced bioremediation model of diverse environmental pollutants.


Subject(s)
Environmental Pollutants , Metals, Heavy , Microbiota , Soil Pollutants , Biodegradation, Environmental , Humans , Soil , Soil Pollutants/analysis
10.
Antonie Van Leeuwenhoek ; 113(8): 1075-1107, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32488494

ABSTRACT

Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant-endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus-thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.


Subject(s)
Bacteria/classification , Biodiversity , Crops, Agricultural/microbiology , Endophytes/classification , Endophytes/physiology , Plant Development , Agriculture/methods , Endophytes/enzymology , Nitrogen Fixation , Plant Growth Regulators , Plant Roots/microbiology , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...