Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 20(1): 161, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831855

ABSTRACT

BACKGROUND: Ubiquitination is a post-translational modification required for a number of physiological functions regulating protein homeostasis, such as protein degradation. The endoplasmic reticulum (ER) quality control system recognizes and degrades proteins no longer needed in the ER through the ubiquitin-proteasome pathway. E2 and E3 enzymes containing a transmembrane domain have been shown to function in ER quality control. The ER transmembrane protein UBE2J1 is a E2 ubiquitin-conjugating enzyme reported to be essential for spermiogenesis at the elongating spermatid stage. Spermatids from Ube2j1 KO male mice are believed to have defects in the dislocation step of ER quality control. However, associated E3 ubiquitin-protein ligases that function during spermatogenesis remain unknown. RESULTS: We identified four evolutionarily conserved testis-specific E3 ubiquitin-protein ligases [RING finger protein 133 (Rnf133); RING finger protein 148 (Rnf148); RING finger protein 151 (Rnf151); and Zinc finger SWIM-type containing 2 (Zswim2)]. Using the CRISPR/Cas9 system, we generated and analyzed the fertility of mutant mice with null alleles for each of these E3-encoding genes, as well as double and triple knockout (KO) mice. Male fertility, male reproductive organ, and sperm-associated parameters were analyzed in detail. Fecundity remained largely unaffected in Rnf148, Rnf151, and Zswim2 KO males; however, Rnf133 KO males displayed severe subfertility. Additionally, Rnf133 KO sperm exhibited abnormal morphology and reduced motility. Ultrastructural analysis demonstrated that cytoplasmic droplets were retained in Rnf133 KO spermatozoa. Although Rnf133 and Rnf148 encode paralogous genes that are chromosomally linked and encode putative ER transmembrane E3 ubiquitin-protein ligases based on their protein structures, there was limited functional redundancy of these proteins. In addition, we identified UBE2J1 as an E2 ubiquitin-conjugating protein that interacts with RNF133. CONCLUSIONS: Our studies reveal that RNF133 is a testis-expressed E3 ubiquitin-protein ligase that plays a critical role for sperm function during spermiogenesis. Based on the presence of a transmembrane domain in RNF133 and its interaction with the ER containing E2 protein UBE2J1, we hypothesize that these ubiquitin-regulatory proteins function together in ER quality control during spermatogenesis.


Subject(s)
Testis , Ubiquitin-Protein Ligases/metabolism , Animals , Fertility , Male , Mice , Semen/metabolism , Testis/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
2.
J Cell Sci ; 134(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34471926

ABSTRACT

Infertility afflicts up to 15% of couples globally each year with men a contributing factor in 50% of these cases. Globozoospermia is a rare condition found in infertile men, which is characterized by defective acrosome biogenesis leading to the production of round-headed sperm. Here, we report that family with sequence similarity 209 (Fam209) is required for acrosome biogenesis in mouse sperm. FAM209 is a small transmembrane protein conserved among mammals. Loss of Fam209 results in fertility defects that are secondary to abnormalities in acrosome biogenesis during spermiogenesis, reminiscent of globozoospermia. Analysis of the FAM209 proteome identified DPY19L2, whose human orthologue is involved in the majority of globozoospermia cases. Although mutations in human and mouse Dpy19l2 have been shown to cause globozoospermia, no in vivo interacting partners of DPY19L2 have been identified until now. FAM209 colocalizes with DPY19L2 at the inner nuclear membrane to maintain the developing acrosome. Here, we identified FAM209 as the first interacting partner of DPY19L2, and the second protein that is essential for acrosome biogenesis that localizes to the inner nuclear membrane.


Subject(s)
Acrosome , Infertility, Male , Animals , Fertility/genetics , Infertility, Male/genetics , Male , Mice , Spermatogenesis/genetics , Spermatozoa
3.
Biol Reprod ; 103(2): 195-204, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32561905

ABSTRACT

As the world population continues to increase to unsustainable levels, the importance of birth control and the development of new contraceptives are emerging. To date, male contraceptive options have been lagging behind those available to women, and those few options available are not satisfactory to everyone. To solve this problem, we have been searching for new candidate target proteins for non-hormonal contraceptives. Testis-specific proteins are appealing targets for male contraceptives because they are more likely to be involved in male reproduction and their targeting by small molecules is predicted to have no on-target harmful effects on other organs. Using in silico analysis, we identified Erich2, Glt6d1, Prss58, Slfnl1, Sppl2c, Stpg3, Tex33, and Tex36 as testis-abundant genes in both mouse and human. The genes, 4930402F06Rik and 4930568D16Rik, are testis-abundant paralogs of Glt6d1 that we also discovered in mice but not in human, and were also included in our studies to eliminate the potential compensation. We generated knockout (KO) mouse lines of all listed genes using the CRISPR/Cas9 system. Analysis of all of the individual KO mouse lines as well as Glt6d1/4930402F06Rik/4930568D16Rik TKO mouse lines revealed that they are male fertile with no observable defects in reproductive organs, suggesting that these 10 genes are not required for male fertility nor play redundant roles in the case of the 3 Glt6D1 paralogs. Further studies are needed to uncover protein function(s), but in vivo functional screening using the CRISPR/Cas9 system is a fast and accurate way to find genes essential for male fertility, which may apply to studies of genes expressed elsewhere. In this study, although we could not find any potential protein targets for non-hormonal male contraceptives, our findings help to streamline efforts to find and focus on only the essential genes.


Subject(s)
Fertility/genetics , Testis/metabolism , Animals , CRISPR-Cas Systems , Gene Editing , Male , Mice , Mice, Knockout , Spermatogenesis/genetics
4.
Biol Reprod ; 103(2): 183-194, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32588039

ABSTRACT

Developing a safe and effective male contraceptive remains a challenge in the field of medical science. Molecules that selectively target the male reproductive tract and whose targets are indispensable for male reproductive function serve among the best candidates for a novel non-hormonal male contraceptive method. To determine the function of these genes in vivo, mutant mice carrying disrupted testis- or epididymis-enriched genes were generated by zygote microinjection or electroporation of the CRISPR/Cas9 components. Male fecundity was determined by consecutively pairing knockout males with wild-type females and comparing the fecundity of wild-type controls. Phenotypic analyses of testis appearance and weight, testis and epididymis histology, and sperm movement were further carried out to examine any potential spermatogenic or sperm maturation defect in mutant males. In this study, we uncovered 13 testis- or epididymis-enriched evolutionarily conserved genes that are individually dispensable for male fertility in mice. Owing to their dispensable nature, it is not feasible to use these targets for the development of a male contraceptive.


Subject(s)
Epididymis/metabolism , Reproduction/genetics , Testis/metabolism , Animals , CRISPR-Cas Systems , Gene Editing , Male , Mice , Phylogeny , Sperm Motility/genetics , Spermatogenesis/genetics
5.
Biol Reprod ; 103(2): 205-222, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32588889

ABSTRACT

Families with sequence similarity 170 members A and B (FAM170A and FAM170B) are testis-specific, paralogous proteins that share 31% amino acid identity and are conserved throughout mammals. While previous in vitro experiments suggested that FAM170B, an acrosome-localized protein, plays a role in the mouse sperm acrosome reaction and fertilization, the role of FAM170A in the testis has not been explored. In this study, we used CRISPR/Cas9 to generate null alleles for each gene, and homozygous null (-/-) male mice were mated to wild-type females for 6 months to assess fertility. Fam170b-/- males were found to produce normal litter sizes and had normal sperm counts, motility, and sperm morphology. In contrast, mating experiments revealed significantly reduced litter sizes and a reduced pregnancy rate from Fam170a-/- males compared with controls. Fam170a-/-;Fam170b-/- double knockout males also produced markedly reduced litter sizes, although not significantly different from Fam170a-/- alone, suggesting that Fam170b does not compensate for the absence of Fam170a. Fam170a-/- males exhibited abnormal spermiation, abnormal head morphology, and reduced progressive sperm motility. Thus, FAM170A has an important role in male fertility, as the loss of the protein leads to subfertility, while FAM170B is expendable. The molecular functions of FAM170A in spermatogenesis are as yet unknown; however, the protein localizes to the nucleus of elongating spermatids and may mediate its effects on spermatid head shaping and spermiation by regulating the expression of other genes. This work provides the first described role of FAM170A in reproduction and has implications for improving human male infertility diagnoses.


Subject(s)
Fertility/genetics , Infertility, Male/genetics , Seminal Plasma Proteins/genetics , Spermatozoa/metabolism , Animals , Female , Male , Mice , Mice, Knockout , Pregnancy , Pregnancy Rate , Seminal Plasma Proteins/metabolism , Sperm Count , Sperm Motility/genetics
6.
J Bacteriol ; 202(14)2020 06 25.
Article in English | MEDLINE | ID: mdl-32393520

ABSTRACT

Group A streptococcus (GAS) produces millions of infections worldwide, including mild mucosal infections, postinfection sequelae, and life-threatening invasive diseases. During infection, GAS readily acquires nutritional iron from host heme and hemoproteins. Here, we identified a new heme importer, named SiaFGH, and investigated its role in GAS pathophysiology. The SiaFGH proteins belong to a group of transporters with an unknown ligand from the recently described family of energy coupling factors (ECFs). A siaFGH deletion mutant exhibited high streptonigrin resistance compared to the parental strain, suggesting that iron ions or an iron complex is the likely ligand. Iron uptake and inductively coupled plasma mass spectrometry (ICP-MS) studies showed that the loss of siaFGH did not impact GAS import of ferric or ferrous iron, but the mutant was impaired in using hemoglobin iron for growth. Analysis of cells growing on hemoglobin iron revealed a substantial decrease in the cellular heme content in the mutant compared to the complemented strain. The induction of the siaFGH genes in trans resulted in the induction of heme uptake. The siaFGH mutant exhibited a significant impairment in murine models of mucosal colonization and systemic infection. Together, the data show that SiaFGH is a new type of heme importer that is key for GAS use of host hemoproteins and that this system is imperative for bacterial colonization and invasive infection.IMPORTANCE ECF systems are new transporters that take up various vitamins, cobalt, or nickel with a high affinity. Here, we establish the GAS SiaFGH proteins as a new ECF module that imports heme and demonstrate its importance in virulence. SiaFGH is the first heme ECF system described in bacteria. We identified homologous systems in the genomes of related pathogens from the Firmicutes phylum. Notably, GAS and other pathogens that use a SiaFGH-type importer rely on host hemoproteins for a source of iron during infection. Hence, recognizing the function of this noncanonical ABC transporter in heme acquisition and the critical role that it plays in disease has broad implications.


Subject(s)
Bacterial Proteins/metabolism , Heme/metabolism , Membrane Transport Proteins/metabolism , Streptococcal Infections/microbiology , Streptococcus pyogenes/metabolism , Animals , Bacterial Proteins/genetics , Biological Transport , Female , Gene Expression Regulation, Bacterial , Humans , Iron/metabolism , Membrane Transport Proteins/genetics , Mice , Streptococcus pyogenes/genetics , Streptococcus pyogenes/growth & development , Streptococcus pyogenes/pathogenicity , Virulence
7.
Biol Reprod ; 103(2): 244-253, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32301969

ABSTRACT

Globozoospermia (sperm with an abnormally round head shape) and asthenozoospermia (defective sperm motility) are known causes of male infertility in human patients. Despite many studies, the molecular details of the globozoospermia etiology are still poorly understood. Serine-rich single-pass membrane protein 1 (Ssmem1) is a conserved testis-specific gene in mammals. In this study, we generated Ssmem1 knockout (KO) mice using the CRISPR/Cas9 system, demonstrated that Ssmem1 is essential for male fertility in mice, and found that SSMEM1 protein is expressed during spermatogenesis but not in mature sperm. The sterility of the Ssmem1 KO (null) mice is associated with globozoospermia and loss of sperm motility. To decipher the mechanism causing the phenotype, we analyzed testes with transmission electron microscopy and discovered that Ssmem1-disrupted spermatids have abnormal localization of Golgi at steps eight and nine of spermatid development. Immunofluorescence analysis with anti-Golgin-97 to label the trans-Golgi network, also showed delayed movement of the Golgi to the spermatid posterior region, which causes failure of sperm head shaping, disorganization of the cell organelles, and entrapped tails in the cytoplasmic droplet. In summary, SSMEM1 is crucial for intracellular Golgi movement to ensure proper spatiotemporal formation of the sperm head that is required for fertilization. These studies and the pathway in which SSMEM1 functions have implications for human male infertility and identifying potential targets for nonhormonal contraception.


Subject(s)
Infertility, Male/genetics , Seminal Plasma Proteins/genetics , Sperm Motility/genetics , Spermatogenesis/genetics , Teratozoospermia/genetics , Animals , Female , Male , Mice , Mice, Knockout , Spermatozoa/metabolism
8.
Biol Reprod ; 102(6): 1234-1247, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32101290

ABSTRACT

Receptor accessory protein 6 (REEP6) is a member of the REEP/Ypt-interacting protein family that we recently identified as essential for normal endoplasmic reticulum homeostasis and protein trafficking in the retina of mice and humans. Interestingly, in addition to the loss of REEP6 in our knockout (KO) mouse model recapitulating the retinal degeneration of humans with REEP6 mutations causing retinitis pigmentosa (RP), we also found that male mice are sterile. Herein, we characterize the infertility caused by loss of Reep6. Expression of both Reep6 mRNA transcripts is present in the testis; however, isoform 1 becomes overexpressed during spermiogenesis. In vitro fertilization assays reveal that Reep6 KO spermatozoa are able to bind the zona pellucida but are only able to fertilize oocytes lacking the zona pellucida. Although spermatogenesis appears normal in KO mice, cauda epididymal spermatozoa have severe motility defects and variable morphological abnormalities, including bent or absent tails. Immunofluorescent staining reveals that REEP6 expression first appears in stage IV tubules within step 15 spermatids, and REEP6 localizes to the connecting piece, midpiece, and annulus of mature spermatozoa. These data reveal an important role for REEP6 in sperm motility and morphology and is the first reported function for a REEP protein in reproductive processes. Additionally, this work identifies a new gene potentially responsible for human infertility and has implications for patients with RP harboring mutations in REEP6.


Subject(s)
Eye Proteins/metabolism , Membrane Proteins/metabolism , Spermatozoa/cytology , Spermatozoa/physiology , Animals , Eye Proteins/genetics , Gene Expression Regulation , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Mutation , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Arch Biochem Biophys ; 538(2): 71-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23993953

ABSTRACT

The hemolytic Group A Streptococcus (GAS) is a notorious human pathogen. Shr protein of GAS participates in iron acquisition by obtaining heme from host hemoglobin and delivering it to the adjacent receptor on the surface, Shp. Heme is then conveyed to the SiaABC proteins for transport across the membrane. Using rapid kinetic studies, we investigated the role of the two heme binding NEAT modules of Shr. Stopped-flow analysis showed that holoNEAT1 quickly delivered heme to apoShp. HoloNEAT2 did not exhibit such activity; only little and slow transfer of heme from NEAT2 to apoShp was seen, suggesting that Shr NEAT domains have distinctive roles in heme transport. HoloNEAT1 also provided heme to apoNEAT2, by a fast and reversible process. To the best of our knowledge this is the first transfer observed between isolated NEAT domains of the same receptor. Sequence alignment revealed that Shr NEAT domains belong to two families of NEAT domains that are conserved in Shr orthologs from several species. Based on the heme transfer kinetics, we propose that Shr proteins modulate heme uptake according to heme availability by a mechanism where NEAT1 facilitates fast heme delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface.


Subject(s)
Bacterial Proteins/metabolism , Heme/metabolism , Host-Pathogen Interactions , Streptococcal Infections/metabolism , Streptococcus pyogenes/physiology , Bacterial Proteins/chemistry , Humans , Kinetics , Methemoglobin/metabolism , Protein Structure, Tertiary , Streptococcal Infections/microbiology , Streptococcus pyogenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...