Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
Front Cell Infect Microbiol ; 13: 1288057, 2023.
Article in English | MEDLINE | ID: mdl-38125908

ABSTRACT

The efficacy of the adaptive immune system in the middle ear (ME) is well established, but the mechanisms are not as well defined as those of gastrointestinal or respiratory tracts. While cellular elements of the adaptive response have been detected in the MEs following infections (or intranasal immunizations), their specific contributions to protecting the organ against reinfections are unknown. How immune protection mechanisms of the MEs compares with those in the adjacent and attached upper and lower respiratory airways remains unclear. To address these knowledge gaps, we used an established mouse respiratory infection model that we recently showed also involves ME infections. Bordetella bronchiseptica delivered to the external nares of mice in tiny numbers very efficiently infects the respiratory tract and ascends the Eustachian tube to colonize and infect the MEs, where it causes severe but acute inflammation resembling human acute otitis media (AOM). Since this AOM naturally resolves, we here examine the immunological mechanisms that clear infection and protect against subsequent infection, to guide efforts to induce protective immunity in the ME. Our results show that once the MEs are cleared of a primary B. bronchiseptica infection, the convalescent organ is strongly protected from reinfection by the pathogen despite its persistence in the upper respiratory tract, suggesting important immunological differences in these adjacent and connected organs. CD4+ and CD8+ T cells trafficked to the MEs following infection and were necessary to robustly protect against secondary challenge. Intranasal vaccination with heat killed B. bronchiseptica conferred robust protection against infection to the MEs, even though the nasopharynx itself was only partially protected. These data establish the MEs as discrete effector sites of adaptive immunity and shows that effective protection in the MEs and the respiratory tract is significantly different. This model system allows the dissection of immunological mechanisms that can prevent bacteria in the nasopharynx from ascending the ET to colonize the ME.


Subject(s)
Bordetella Infections , Bordetella bronchiseptica , Otitis Media , Respiratory Tract Infections , Humans , Animals , Mice , Bordetella Infections/microbiology , Respiratory System , Respiratory Tract Infections/microbiology , Otitis Media/prevention & control , Ear, Middle
3.
Front Cell Infect Microbiol ; 12: 795230, 2022.
Article in English | MEDLINE | ID: mdl-35360099

ABSTRACT

Chronic otitis media (COM) is the long-term infection and inflammation of the middle ears typically caused by upper respiratory tract pathogens that are able to ascend the Eustachian tube. Our understanding of contributing factors is limited because human otopathogens cannot naturally colonize or persist in the middle ears of mice. We recently described a natural COM in mice caused by Bordetella pseudohinzii and proposed this as an experimental system to study bacterial mechanisms of immune evasion that allow persistent infection of the middle ear. Here we describe a novel pertussis toxin (PTx)-like factor unique to B. pseudohinzii, apparently acquired horizontally, that is associated with its particularly efficient persistence and pathogenesis. The catalytic subunit of this toxin, PsxA, has conserved catalytic sites and substantial predicted structural homology to pertussis toxin catalytic subunit PtxA. Deletion of the gene predicted to encode the catalytic subunit, psxA, resulted in a significant decrease in persistence in the middle ears. The defect was not observed in mice lacking T cells, indicating that PsxA is necessary for persistence only when T cells are present. These results demonstrate the role of a novel putative toxin in the persistence of B. pseudohinzii and its generation of COM. This PsxA-mediated immune evasion strategy may similarly be utilized by human otopathogens, via other PTx-like toxins or alternative mechanisms to disrupt critical T cell functions necessary to clear bacteria from the middle ear. This work demonstrates that this experimental system can allow for the detailed study of general strategies and specific mechanisms that otopathogens use to evade host immune responses to persist in the middle ear to cause COM.


Subject(s)
Otitis Media , Animals , Bacteria , Ear, Middle/microbiology , Inflammation , Mice , Otitis Media/microbiology , Pertussis Toxin
4.
Dis Model Mech ; 15(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-35311902

ABSTRACT

Pertussis (whooping cough) is a highly transmissible human respiratory disease caused by Bordetella pertussis, a human-restricted pathogen. Animal models generally involve pneumonic infections induced by depositing large numbers of bacteria in the lungs of mice. These models have informed us about the molecular pathogenesis of pertussis and guided development of vaccines that successfully protect against severe disease. However, they bypass the catarrhal stage of the disease, when bacteria first colonize and initially grow in the upper respiratory tract. This is a critical and highly transmissible stage of the infection that current vaccines do not prevent. Here, we demonstrate a model system in which B. pertussis robustly and persistently infects the nasopharynx of TLR4-deficient mice, inducing localized inflammation, neutrophil recruitment and mucus production as well as persistent shedding and occasional transmission to cage mates. This novel experimental system will allow the study of the contributions of bacterial factors to colonization of and shedding from the nasopharynx, as occurs during the catarrhal stage of pertussis, and interventions that might better control the ongoing circulation of pertussis.


Subject(s)
Respiratory Tract Infections , Whooping Cough , Animals , Bordetella pertussis , Lung/microbiology , Mice , Pertussis Vaccine , Whooping Cough/microbiology , Whooping Cough/prevention & control
5.
mSphere ; 7(1): e0089221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196124

ABSTRACT

Acute pathogens such as Bordetella pertussis can cause severe disease but are ultimately cleared by the immune response. This has led to the accepted paradigm that convalescent immunity is optimal and therefore broadly accepted as the "gold standard" against which vaccine candidates should be compared. However, successful pathogens like B. pertussis have evolved multiple mechanisms for suppressing and evading host immunity, raising the possibility that disruption of these mechanisms could result in substantially stronger or better immunity. Current acellular B. pertussis vaccines, delivered in a 5-dose regimen, induce only short-term immunity against disease and even less against colonization and transmission. Importantly, they provide modest protection against other Bordetella species that cause substantial human disease. A universal vaccine that protects against the three classical Bordetella spp. could decrease the burden of whooping cough-like disease in humans and other animals. Our recent work demonstrated that Bordetella spp. suppress host inflammatory responses and that disrupting the regulation of immunosuppressive mechanisms can allow the host to generate substantially stronger sterilizing immunity against the three classical Bordetella spp. Here, we identify immune parameters impacted by Bordetella species immunomodulation, including the generation of robust Th17 and B cell memory responses. Disrupting immunomodulation augmented the immune response, providing strong protection against the prototypes of all three classical Bordetella spp. as well as recent clinical isolates. Importantly, the protection in mice lasted for at least 15 months and was associated with recruitment of high numbers of B and T cells in the lungs as well as enhanced Th17 mucosal responses and persistently high titers of antibodies. These findings demonstrate that disrupting bacterial immunomodulatory pathways can generate much stronger and more protective immune responses to infection, with important implications for the development of better vaccines. IMPORTANCE Infectious diseases are a major cause of morbidity and mortality in the United States, accounting for over 40 million hospitalizations since 1998. Therefore, novel vaccine strategies are imperative, which can be improved with a better understanding of the mechanisms that bacteria utilize to suppress host immunity, a key mechanism for establishing colonization. Bordetella spp., the causative agents of whooping cough, suppress host immunity, which allows for persistent colonization. We discovered a regulator of a bacterial immunosuppressive pathway, which, when mutated in Bordetella spp., allows for rapid clearance of infection and subsequent generation of protective immunity for at least 15 months. After infection with the mutant strain, mice exhibited sterilizing immunity against the three classical Bordetella spp., suggesting that the immune response can be both stronger and cross-protective. This work presents a strategy for vaccine development that can be applied to other immunomodulatory pathogens.


Subject(s)
Whooping Cough , Animals , Bordetella pertussis , Disease Models, Animal , Mice , Pertussis Vaccine , Vaccines, Attenuated , Whooping Cough/microbiology , Whooping Cough/prevention & control
6.
Front Cell Infect Microbiol ; 12: 798317, 2022.
Article in English | MEDLINE | ID: mdl-35223538

ABSTRACT

A variety of bacteria have evolved the ability to interact with environmental phagocytic predators such as amoebae, which may have facilitated their subsequent interactions with phagocytes in animal hosts. Our recent study found that the animal pathogen Bordetella bronchiseptica can evade predation by the common soil amoeba Dictyostelium discoideum, survive within, and hijack its complex life cycle as a propagation and dissemination vector. However, it is uncertain whether the mechanisms allowing interactions with predatory amoebae are conserved among Bordetella species, because divergence, evolution, and adaptation to different hosts and ecological niches was accompanied by acquisition and loss of many genes. Here we tested 9 diverse Bordetella species in three assays representing distinct aspects of their interactions with D. discoideum. Several human and animal pathogens retained the abilities to survive within single-celled amoeba, to inhibit amoebic plaque expansion, and to translocate with amoebae to the fruiting body and disseminate along with the fruiting body. In contrast, these abilities were partly degraded for the bird pathogen B. avium, and for the human-restricted species B. pertussis and B. parapertussis. Interestingly, a different lineage of B. parapertussis only known to infect sheep retained the ability to interact with D. discoideum, demonstrating that these abilities were lost in multiple lineages independently, correlating with niche specialization and recent rapid genome decay apparently mediated by insertion sequences. B. petrii has been isolated sporadically from diverse human and environmental sources, has acquired insertion sequences, undergone genome decay and has also lost the ability to interact with amoebae, suggesting some specialization to some unknown niche. A genome-wide association study (GWAS) identified a set of genes that are potentially associated with the ability to interact with D. discoideum. These results suggest that massive gene loss associated with specialization of some Bordetella species to a closed life cycle in a particular host was repeatedly and independently accompanied by loss of the ability to interact with amoebae in an environmental niche.


Subject(s)
Amoeba , Bordetella bronchiseptica , Bordetella , Dictyostelium , Amoeba/microbiology , Animals , Bordetella/genetics , Bordetella bronchiseptica/genetics , Dictyostelium/microbiology , Genome-Wide Association Study , Sheep/genetics
7.
Front Immunol ; 12: 701341, 2021.
Article in English | MEDLINE | ID: mdl-34777335

ABSTRACT

The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.


Subject(s)
Francisella tularensis/immunology , Host-Pathogen Interactions/immunology , Macrophages/immunology , Macrophages/metabolism , Selenoproteins/metabolism , Tularemia/etiology , Tularemia/metabolism , Animals , Disease Models, Animal , Disease Susceptibility , Francisella tularensis/genetics , Francisella tularensis/pathogenicity , Mice , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/microbiology , Pneumonia/pathology , Tularemia/mortality , Virulence/genetics , Virulence Factors/genetics
8.
PLoS Pathog ; 17(8): e1009735, 2021 08.
Article in English | MEDLINE | ID: mdl-34347835

ABSTRACT

Whooping cough is resurging in the United States despite high vaccine coverage. The rapid rise of Bordetella pertussis isolates lacking pertactin (PRN), a key vaccine antigen, has led to concerns about vaccine-driven evolution. Previous studies showed that pertactin can mediate binding to mammalian cells in vitro and act as an immunomodulatory factor in resisting neutrophil-mediated clearance. To further investigate the role of PRN in vivo, we examined the functions of pertactin in the context of a more naturally low dose inoculation experimental system using C3H/HeJ mice that is more sensitive to effects on colonization, growth and spread within the respiratory tract, as well as an experimental approach to measure shedding and transmission between hosts. A B. bronchiseptica pertactin deletion mutant was found to behave similarly to its wild-type (WT) parental strain in colonization of the nasal cavity, trachea, and lungs of mice. However, the pertactin-deficient strain was shed from the nares of mice in much lower numbers, resulting in a significantly lower rate of transmission between hosts. Histological examination of respiratory epithelia revealed that pertactin-deficient bacteria induced substantially less inflammation and mucus accumulation than the WT strain and in vitro assays verified the effect of PRN on the induction of TNF-α by murine macrophages. Interestingly, only WT B. bronchiseptica could be recovered from the spleen of infected mice and were further observed to be intracellular among isolated splenocytes, indicating that pertactin contributes to systemic dissemination involving intracellular survival. These results suggest that pertactin can mediate interactions with immune cells and augments inflammation that contributes to bacterial shedding and transmission between hosts. Understanding the relative contributions of various factors to inflammation, mucus production, shedding and transmission will guide novel strategies to interfere with the reemergence of pertussis.


Subject(s)
Alveolar Epithelial Cells/microbiology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Shedding , Bordetella Infections/transmission , Bordetella bronchiseptica/pathogenicity , Inflammation/pathology , Virulence Factors, Bordetella/metabolism , Animals , Bacterial Adhesion , Bacterial Outer Membrane Proteins/genetics , Bordetella Infections/metabolism , Bordetella Infections/microbiology , Female , Humans , Inflammation/metabolism , Inflammation/microbiology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Virulence Factors, Bordetella/genetics
9.
Emerg Infect Dis ; 27(8): 2107-2116, 2021 08.
Article in English | MEDLINE | ID: mdl-34286682

ABSTRACT

Conventional pertussis animal models deliver hundreds of thousands of Bordetella pertussis bacteria deep into the lungs, rapidly inducing severe pneumonic pathology and a robust immune response. However, human infections usually begin with colonization and growth in the upper respiratory tract. We inoculated only the nasopharynx of mice to explore the course of infection in a more natural exposure model. Nasopharyngeal colonization resulted in robust growth in the upper respiratory tract but elicited little immune response, enabling prolonged and persistent infection. Immunization with human acellular pertussis vaccine, which prevents severe lung infections in the conventional pneumonic infection model, had little effect on nasopharyngeal colonization. Our infection model revealed that B. pertussis can efficiently colonize the mouse nasopharynx, grow and spread within and between respiratory organs, evade robust host immunity, and persist for months. This experimental approach can measure aspects of the infection processes not observed in the conventional pneumonic infection model.


Subject(s)
Bordetella Infections , Whooping Cough , Animals , Bordetella pertussis , Immune Evasion , Mice , Nasopharynx , Pertussis Vaccine , Whooping Cough/prevention & control
10.
Emerg Infect Dis ; 27(6): 1561-1566, 2021 06.
Article in English | MEDLINE | ID: mdl-34014152

ABSTRACT

Recent reemergence of pertussis (whooping cough) in highly vaccinated populations and rapid expansion of Bordetella pertussis strains lacking pertactin (PRN), a common acellular vaccine antigen, have raised the specter of vaccine-driven evolution and potential return of what was once the major killer of children. The discovery that most circulating B. pertussis strains in the United States have acquired new and independent disruptive mutations in PRN is compelling evidence of strong selective pressure. However, the other 4 antigens included in acellular vaccines do not appear to be selected against so rapidly. We consider 3 aspects of PRN that distinguish it from other vaccine antigens, which might, individually or collectively, explain why only this antigen is being precipitously eliminated. An understanding of the increase in PRN-deficient strains should provide useful information for the current search for new protective antigens and provide broader lessons for the design of improved subunit vaccines.


Subject(s)
Bordetella pertussis , Whooping Cough , Bacterial Outer Membrane Proteins , Child , Humans , Pertussis Vaccine , Virulence Factors, Bordetella
11.
Front Cell Infect Microbiol ; 11: 815627, 2021.
Article in English | MEDLINE | ID: mdl-35141173

ABSTRACT

Acute otitis media (AOM) is commonly caused by bacterial pathobionts of the nasopharynx that ascend the Eustachian tube to cause disease in the middle ears. To model and study the various complexities of AOM, common human otopathogens are injected directly into the middle ear bullae of rodents or are delivered with viral co-infections which contribute to the access to the middle ears in complex and partially understood ways. Here, we present the novel observation that Bordetella bronchiseptica, a well-characterized respiratory commensal/pathogen of mice, also efficiently ascends their Eustachian tubes to colonize their middle ears, providing a flexible mouse model to study naturally occurring AOM. Mice lacking T and/or B cells failed to resolve infections, highlighting the cooperative role of both in clearing middle ear infection. Adoptively transferred antibodies provided complete protection to the lungs but only partially protected the middle ears, highlighting the differences between respiratory and otoimmunology. We present this as a novel experimental system that can capitalize on the strengths of the mouse model to dissect the molecular mechanisms involved in the generation and function of immunity within the middle ear.


Subject(s)
Bordetella bronchiseptica , Eustachian Tube , Otitis Media , Animals , Ear, Middle/microbiology , Eustachian Tube/microbiology , Mice , Nasopharynx/microbiology , Otitis Media/microbiology
12.
Microorganisms ; 8(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212993

ABSTRACT

Recent findings revealed pivotal roles for eosinophils in protection against parasitic and viral infections, as well as modulation of adaptive immune responses in the gastric mucosa. However, the known effects of eosinophils within the respiratory tract remain predominantly pathological, associated with allergy and asthma. Simulating natural respiratory infections in mice, we examined how efficient and well-adapted pathogens can block eosinophil functions that contribute to the immune response. Bordetella bronchiseptica, a natural pathogen of the mouse, uses the sigma factor btrS to regulate expression of mechanisms that interfere with eosinophil recruitment and function. When btrS is disrupted, immunomodulators are dysregulated, and eosinophils are recruited to the lungs, suggesting they may contribute to much more efficient generation of adaptive immunity induced by this mutant. Eosinophil-deficient mice failed to produce pro-inflammatory cytokines, to recruit lymphocytes, to organize lymphoid aggregates that resemble Bronchus Associated Lymphoid Tissue (BALT), to generate an effective antibody response, and to clear bacterial infection from the respiratory tract. Importantly, the failure of eosinophil-deficient mice to produce these lymphoid aggregates indicates that eosinophils can mediate the generation of an effective lymphoid response in the lungs. These data demonstrate that efficient respiratory pathogens can block eosinophil recruitment, to inhibit the generation of robust adaptive immune responses. They also suggest that some post-infection sequelae involving eosinophils, such as allergy and asthma, might be a consequence of bacterial mechanisms that manipulate their accumulation and/or function within the respiratory tract.

13.
Vaccines (Basel) ; 8(2)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414005

ABSTRACT

Pertussis is a highly communicable acute respiratory infection caused by Bordetella pertussis. Immunity is not lifelong after natural infection or vaccination. Pertussis outbreaks occur cyclically worldwide and effective vaccination strategies are needed to control disease. Whole-cell pertussis (wP) vaccines became available in the 1940s but have been replaced in many countries with acellular pertussis (aP) vaccines. This review summarizes disease epidemiology before and after the introduction of wP and aP vaccines, discusses the rationale and clinical implications for antigen inclusion in aP vaccines, and provides an overview of novel vaccine strategies aimed at better combating pertussis in the future.

15.
PLoS Pathog ; 15(4): e1007696, 2019 04.
Article in English | MEDLINE | ID: mdl-30970038

ABSTRACT

Infection and inflammation of the middle ears that characterizes acute and chronic otitis media (OM), is a major reason for doctor visits and antibiotic prescription, particularly among children. Nasopharyngeal pathogens that are commonly associated with OM in humans do not naturally colonize the middle ears of rodents, and experimental models in most cases involve directly injecting large numbers of human pathogens into the middle ear bullae of rodents, where they induce a short-lived acute inflammation but fail to persist. Here we report that Bordetella pseudohinzii, a respiratory pathogen of mice, naturally, efficiently and rapidly ascends the eustachian tubes to colonize the middle ears, causing acute and chronic histopathological changes with progressive decrease in hearing acuity that closely mimics otitis media in humans. Laboratory mice experimentally inoculated intranasally with very low numbers of bacteria consistently have their middle ears colonized and subsequently transmit the bacterium to cage mates. Taking advantage of the specifically engineered and well characterized immune deficiencies available in mice we conducted experiments to uncover different roles of T and B cells in controlling bacterial numbers in the middle ear during chronic OM. The iconic mouse model provides significant advantages for elucidating aspects of host-pathogen interactions in otitis media that are currently not possible using other animal models. This natural model of otitis media permits the study of transmission between hosts, efficient early colonization of the respiratory tract, ascension of the eustachian tube, as well as colonization, pathogenesis and persistence in the middle ear. It also allows the combination of the powerful tools of mouse molecular immunology and bacterial genetics to determine the mechanistic basis for these important processes.


Subject(s)
Bordetella Infections/transmission , Bordetella/pathogenicity , Disease Models, Animal , Eustachian Tube/microbiology , Nasal Cavity/microbiology , Otitis Media/microbiology , Animals , Bordetella Infections/complications , Bordetella Infections/microbiology , Chronic Disease , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL
17.
Front Microbiol ; 10: 2839, 2019.
Article in English | MEDLINE | ID: mdl-31921025

ABSTRACT

Animal and human pathogens of the genus Bordetella are not commonly considered to be intracellular pathogens, although members of the closely related classical bordetellae are known to enter and persist within macrophages in vitro and have anecdotally been reported to be intracellular in clinical samples. B. bronchiseptica, the species closest to the ancestral lineage of the classical bordetellae, infects a wide range of mammals but is known to have an alternate life cycle, persisting, replicating and disseminating with amoeba. These observations give rise to the hypothesis that the ability for intracellular survival has an ancestral origin and is common among animal-pathogenic and environmental Bordetella species. Here we analyzed the survival of B. bronchiseptica and defined its transcriptional response to internalization by murine macrophage-like cell line RAW 264.7. Although the majority of the bacteria were killed and digested by the macrophages, a consistent fraction survived and persisted inside the phagocytes. Internalization prompted the activation of a prominent stress response characterized by upregulation of genes involved in DNA repair, oxidative stress response, pH homeostasis, chaperone functions, and activation of specific metabolic pathways. Cross species genome comparisons revealed that most of these upregulated genes are highly conserved among both the classical and non-classical Bordetella species. The diverse Bordetella species also shared the ability to survive inside RAW 264.7 cells, with the single exception being the bird pathogen B. avium, which has lost several of those genes. Knock-out mutations in genes expressed intracellularly resulted in decreased persistence inside the phagocytic cells, emphasizing the importance of these genes in this environment. These data show that the ability to persist inside macrophage-like RAW 264.7 cells is shared among nearly all Bordetella species, suggesting that resisting phagocytes may be an ancient mechanism that precedes speciation in the genus and may have facilitated the adaptation of Bordetella species from environmental bacteria to mammalian respiratory pathogens.

18.
Front Microbiol ; 9: 1969, 2018.
Article in English | MEDLINE | ID: mdl-30245672

ABSTRACT

The classical bordetellae sense and respond to a variety of environments outside and within their mammalian hosts. By causing inflammation and tissue damage, we reasoned that bordetellae are likely to encounter components of blood and/or serum during the course of a respiratory infection, and that detecting and responding to these would be advantageous. Therefore, we hypothesized that classical bordetellae have the ability to sense and respond to blood or serum. Blood or serum exposure resulted in substantial transcriptional changes in Bordetella bronchiseptica, including enhanced expression of many virulence-associated genes. Exposure to blood or serum additionally elicited production of multiple antigens not otherwise detectable, and led to increased bacterial cytotoxicity against macrophages. Transcriptional responses to blood/serum were observed in a Bvg- phase-locked mutant, indicating that the response is not solely dependent on a functional BvgAS system. Similar transcriptional responses to blood/serum were observed for the other classical bordetellae, Bordetella pertussis and Bordetella parapertussis. These data suggest the classical bordetellae respond to signals present in blood and serum by changing their behavior in ways that likely contribute to their remarkable success, via effects on pathogenesis, persistence and/or transmission between hosts.

19.
J Antimicrob Chemother ; 73(10): 2797-2805, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30107601

ABSTRACT

Background: Why resistance to specific antibiotics emerges and spreads rapidly in some bacteria confronting these drugs but not others remains a mystery. Resistance to erythromycin in the respiratory pathogens Staphylococcus aureus and Streptococcus pneumoniae emerged rapidly and increased problematically. However, resistance is uncommon amongst the classic Bordetella species despite infections being treated with this macrolide for decades. Objectives: We examined whether the apparent progenitor of the classic Bordetella spp., Bordetella bronchiseptica, is able to rapidly generate de novo resistance to antibiotics and, if so, why such resistance might not persist and propagate. Methods: Independent strains of B. bronchiseptica resistant to erythromycin were generated in vitro by successively passaging them in increasing subinhibitory concentrations of this macrolide. Resistant mutants obtained were evaluated for their capacity to infect mice, and for other virulence properties including adherence, cytotoxicity and induction of cytokines. Results: B. bronchiseptica rapidly developed stable and persistent antibiotic resistance de novo. Unlike the previously reported trade-off in fitness, multiple independent resistant mutants were not defective in their rates of growth in vitro but were consistently defective in colonizing mice and lost a variety of virulence phenotypes. These changes rendered them avirulent but phenotypically similar to the previously described growth phase associated with the ability to survive in soil, water and/or other extra-mammalian environments. Conclusions: These observations raise the possibility that antibiotic resistance in some organisms results in trade-offs that are not quantifiable in routine measures of general fitness such as growth in vitro, but are pronounced in various aspects of infection in the natural host.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bordetella Infections/microbiology , Bordetella Infections/pathology , Bordetella bronchiseptica/drug effects , Bordetella bronchiseptica/pathogenicity , Drug Resistance, Bacterial , Erythromycin/pharmacology , Animals , Bacterial Adhesion , Bacterial Toxins/metabolism , Bordetella bronchiseptica/growth & development , Cell Survival/drug effects , Cytokines/metabolism , Disease Models, Animal , Mice , Mutation , Selection, Genetic , Serial Passage , Virulence
20.
Appl Environ Microbiol ; 84(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29269496

ABSTRACT

Francisella tularensis subsp. holarctica is found in North America and much of Europe and causes the disease tularemia in humans and animals. An aquatic cycle has been described for this subspecies, which has caused waterborne outbreaks of tularemia in at least 10 countries. In this study, we sought to identify the mechanosensitive channel(s) required for the bacterium to survive the transition from mammalian hosts to freshwater, which is likely essential for the transmission of the bacterium between susceptible hosts. A single 165-amino-acid MscS-type mechanosensitive channel (FtMscS) was found to protect F. tularensis subsp. holarctica from hypoosmotic shock, despite lacking much of the cytoplasmic vestibule domain found in well-characterized MscS proteins from other organisms. The deletion of this channel did not affect virulence within the mammalian host; however, FtMscS was required to survive the transition from the host niche to freshwater. The deletion of FtMscS did not alter the sensitivity of F. tularensis subsp. holarctica to detergents, H2O2, or antibiotics, suggesting that the role of FtMscS is specific to protection from hypoosmotic shock. The deletion of FtMscS also led to a reduced average cell size without altering gross cell morphology. The mechanosensitive channel identified and characterized in this study likely contributes to the transmission of tularemia between hosts by allowing the bacterium to survive the transition from mammalian hosts to freshwater.IMPORTANCE The contamination of freshwater by Francisella tularensis subsp. holarctica has resulted in a number of outbreaks of tularemia. Invariably, the contamination originates from the carcasses or excreta of infected animals and thus involves an abrupt osmotic downshock as the bacteria enter freshwater. How F. tularensis survives this drastic change in osmolarity has not been clear, but here we report that a single mechanosensitive channel protects the bacterium from osmotic downshock. This channel is functional despite lacking much of the cytoplasmic vestibule domain that is present in better-studied organisms such as Escherichia coli; this report builds on previous studies that have suggested that parts of this domain are dispensable for downshock protection. These findings extend our understanding of the aquatic cycle and ecological persistence of F. tularensis, with further implications for mechanosensitive channel biology.


Subject(s)
Francisella tularensis/physiology , Fresh Water , Mechanotransduction, Cellular/physiology , Salt Stress , Animals , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL
...