Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Elife ; 132024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221782

ABSTRACT

The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 respectively, were differentially regulated. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.

2.
Genetics ; 225(4)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37804533

ABSTRACT

Epithelial cells contain polarity complexes on the lateral membrane and are organized in a hexagon-dominated polygonal array. The mechanisms regulating the organization of polygonal architecture in metazoan embryogenesis are not completely understood. Drosophila embryogenesis enables mechanistic analysis of epithelial polarity formation and its impact on polygonal organization. The plasma membrane (PM) of syncytial Drosophila blastoderm embryos is organized as a polygonal array with pseudocleavage furrow formation during the almost synchronous cortical division cycles. We find that polygonal (PM) organization arises in the metaphase (MP) of division cycle 11, and hexagon dominance occurs with an increase in furrow length in the metaphase of cycle 12. There is a decrease in cell shape index in metaphase from cycles 11 to 13. This coincides with Drosophila E-cad (DE-cadherin) and Bazooka enrichment at the edges and the septin, Peanut at the vertices of the furrow. We further assess the role of polarity and adhesion proteins in pseudocleavage furrow formation and its organization as a polygonal array. We find that DE-cadherin depletion leads to decreased furrow length, loss of hexagon dominance, and increased cell shape index. Bazooka and Peanut depletion lead to decreased furrow length, delay in onset of hexagon dominance from cycle 12 to 13, and increased cell shape index. Hexagon dominance occurs with an increase in furrow length in cycle 13 and increased DE-cadherin, possibly due to the inhibition of endocytosis. We conclude that polarity protein recruitment and regulation of endocytic pathways enable pseudocleavage furrow stability and the formation of a hexagon-dominated polygon array.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Blastoderm/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cell Membrane/metabolism , Cadherins/genetics , Cadherins/metabolism , Drosophila melanogaster/metabolism
3.
Biophys J ; 121(12): 2419-2435, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35591789

ABSTRACT

Syncytial cells contain multiple nuclei and have local distribution and function of cellular components despite being synthesized in a common cytoplasm. The syncytial Drosophila blastoderm embryo shows reduced spread of organelle and plasma membrane-associated proteins between adjacent nucleo-cytoplasmic domains. Anchoring to the cytoarchitecture within a nucleo-cytoplasmic domain is likely to decrease the spread of molecules; however, its role in restricting this spread has not been assessed. In order to analyze the cellular mechanisms that regulate the rate of spread of plasma membrane-associated molecules in the syncytial Drosophila embryos, we express a pleckstrin homology (PH) domain in a localized manner at the anterior of the embryo by tagging it with the bicoid mRNA localization signal. Anteriorly expressed PH domain forms an exponential gradient in the anteroposterior axis with a longer length scale compared with Bicoid. Using a combination of experiments and theoretical modeling, we find that the characteristic distribution and length scale emerge due to plasma membrane sequestration and restriction within an energid. Loss of plasma membrane remodeling to form pseudocleavage furrows shows an enhanced spread of PH domain but not Bicoid. Modeling analysis suggests that the enhanced spread of the PH domain occurs due to the increased spread of the cytoplasmic population of the PH domain in pseudocleavage furrow mutants. Our analysis of cytoarchitecture interaction in regulating plasma membrane protein distribution and constraining its spread has implications on the mechanisms of spread of various molecules, such as morphogens in syncytial cells.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cell Membrane/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Pleckstrin Homology Domains
4.
Int J Dev Biol ; 64(4-5-6): 275-287, 2020.
Article in English | MEDLINE | ID: mdl-32658989

ABSTRACT

Drosophila embryogenesis begins with nuclear division in a common cytoplasm forming a syncytial cell. Morphogen gradient molecules spread across nucleo-cytoplasmic domains to pattern the body axis of the syncytial embryo. The diffusion of molecules across the syncytial nucleo-cytoplasmic domains is potentially constrained by association with the components of cellular architecture. However, the extent of restriction has not been examined. Here we use photoactivation (PA) to generate a source of cytoplasmic or cytoskeletal molecules in order to monitor the kinetics of their spread in the syncytial Drosophila embryo. Photoactivated PA-GFP and PA-GFP-Tubulin generated within a fixed anterior area diffused along the antero-posterior axis. These molecules were enriched in the cortical cytoplasm above the yolk-filled center, suggesting that the cortical cytoplasm is phase separated from the yolk-filled center. The length scales of diffusion were extracted using exponential fits under steady state assumptions. PA-GFP spread a greater distance as compared to PA-GFP-Tubulin. Both molecules were more restricted when generated in the center of the embryo. The length scale of spread for PA-GFP-Tubulin increased in mutant embryos containing short plasma membrane furrows and a disrupted tubulin cytoskeleton. PA-GFP spread was unaffected by cyto-architecture perturbation. Taken together, these data show that PA-GFP-Tubulin spread is restricted by its incorporation in the microtubule network and intact plasma membrane furrows. This photoactivation based analysis of protein spread allows for interpretation of the dependence of gradient formation on syncytial cyto-architecture.


Subject(s)
Blastoderm/metabolism , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/metabolism , Giant Cells/metabolism , Tubulin/metabolism , Algorithms , Animals , Animals, Genetically Modified , Blastoderm/cytology , Blastoderm/embryology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Giant Cells/cytology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Models, Theoretical , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tubulin/genetics
5.
J Cell Sci ; 133(10)2020 05 22.
Article in English | MEDLINE | ID: mdl-32265269

ABSTRACT

Cell shape morphogenesis, from spherical to polygonal, occurs in epithelial cell formation in metazoan embryogenesis. In syncytial Drosophila embryos, the plasma membrane incompletely surrounds each nucleus and is organized as a polygonal epithelial-like array. Each cortical syncytial division cycle shows a circular to polygonal plasma membrane transition along with furrow extension between adjacent nuclei from interphase to metaphase. In this study, we assess the relative contribution of DE-cadherin (also known as Shotgun) and Myosin II (comprising Zipper and Spaghetti squash in flies) at the furrow to polygonal shape transition. We show that polygonality initiates during each cortical syncytial division cycle when the furrow extends from 4.75 to 5.75 µm. Polygon plasma membrane organization correlates with increased junctional tension, increased DE-cadherin and decreased Myosin II mobility. DE-cadherin regulates furrow length and polygonality. Decreased Myosin II activity allows for polygonality to occur at a lower length than controls. Increased Myosin II activity leads to loss of lateral furrow formation and complete disruption of the polygonal shape transition. Our studies show that DE-cadherin-Myosin II balance regulates an optimal lateral membrane length during each syncytial cycle for polygonal shape transition.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cadherins/genetics , Cell Membrane , Drosophila Proteins/genetics , Embryo, Nonmammalian , Myosin Type II/genetics
6.
J Cell Sci ; 133(10)2020 05 26.
Article in English | MEDLINE | ID: mdl-32327556

ABSTRACT

Branched actin networks driven by Arp2/3 interact with actomyosin filaments in processes such as cell migration. Similar interactions occur in the syncytial Drosophila blastoderm embryo where expansion of apical caps by Arp2/3-driven actin polymerization occurs in interphase, and cap buckling at contact edges by Myosin II to form furrows takes place in metaphase. Here, we study the role of Syndapin (Synd), an F-BAR domain-containing protein, in apical cap remodeling prior to furrow extension. We found that depletion of synd resulted in larger apical caps. Super-resolution and TIRF microscopy showed that control embryos had long apical actin protrusions in caps during interphase and short protrusions during metaphase, whereas synd depletion led to formation of sustained long protrusions, even during metaphase. Loss of Arp2/3 function in synd mutants partly reverted defects in apical cap expansion and protrusion remodeling. Myosin II levels were decreased in synd mutants, an observation consistent with the expanded cap phenotype previously reported for Myosin II mutant embryos. We propose that Synd function limits branching activity during cap expansion and affects Myosin II distribution in order to bring about a transition in actin remodeling activity from apical cap expansion to lateral furrow extension.


Subject(s)
Actomyosin , Drosophila Proteins , Actin Cytoskeleton , Actins/genetics , Animals , Carrier Proteins , Drosophila , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Protein Domains
7.
Mol Cell Biochem ; 365(1-2): 279-99, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22399265

ABSTRACT

DNA-binding proteins control various cellular processes such as recombination, replication and transcription. This review is aimed to summarize some of the most commonly used techniques to determine DNA-protein interactions. In vitro techniques such as footprinting assays, electrophoretic mobility shift assay, southwestern blotting, yeast one-hybrid assay, phage display and proximity ligation assay have been discussed. The highly versatile in vivo techniques such as chromatin immunoprecipitation and its variants, DNA adenine methyl transferase identification as well as 3C and chip-loop assay have also been summarized. In addition, some in silico tools have been reviewed to provide computational basis for determining DNA-protein interactions. Biophysical techniques like fluorescence resonance energy transfer (FRET) techniques, FRET-FLIM, circular dichroism, atomic force microscopy, nuclear magnetic resonance, surface plasmon resonance, etc. have also been highlighted.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Animals , Calorimetry , Chromatin Immunoprecipitation/methods , Circular Dichroism , Computer Simulation , DNA/chemistry , DNA Footprinting , DNA-Binding Proteins/chemistry , Electrophoretic Mobility Shift Assay , Fluorescence Resonance Energy Transfer , Humans , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Models, Molecular , Peptide Library , Protein Binding , Software , Surface Plasmon Resonance , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL