Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227271

ABSTRACT

Oligodendrocytes (OL) are the myelinating cells of the central nervous system that mediate nerve conduction. Loss of oligodendrocytes results in demyelination, triggering neurological deficits. Developing a better understanding of the cell signaling pathways influencing OL development may aid in the development of therapeutic strategies. The primary focus of this study was to investigate and elucidate the cell signaling pathways implicated in the developmental maturation of oligodendrocytes using human fetal neural stem cells (hFNSCs)-derived primary OL and MO3.13 cell line. Successful differentiation into OL was established by examining morphological changes, increased expression of mature OL markers MBP, MOG and decreased expression of pre-OL markers CSPG4 and O4. Analyzing transcriptional datasets (using RNA sequencing) in pre-OL and mature OL derived from hFNSCs revealed the novel and critical involvement of the JAK-STAT cell signaling pathway in terminal OL maturation. The finding was validated in MO3.13 cell line whose differentiation was accompanied by upregulation of IL-6 and the transcription factor STAT3. Increased phosphorylated STAT3 (pY705) levels were demonstrated by western blotting in hFNSCs-derived primary OL as well as terminal maturation in MO3.13 cells, thus validating the involvement of the JAK-STAT pathway in OL maturation. Pharmacological suppression of STAT3 phosphorylation (confirmed by western blotting) was able to prevent the increase of MBP-positive cells as demonstrated by flow cytometry. These novel findings highlight the involvement of the JAK-STAT pathway in OL maturation and raise the possibility of using this as a therapeutic strategy in demyelinating diseases.

2.
Biomedicines ; 11(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37626663

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder and has been proposed to have an imbalance between pro-inflammatory and anti-inflammatory factors. METHODS: This study was conducted on 41 participants {18 COPD patients (smokers, COPD S (n = 9); reformed smokers, COPD RS (n = 9)) and 23 controls (non-smokers, CNS (n = 14); smokers, CS (n = 9))}. Flow cytometry was used to identify circulatory immune cells and correlated with serum cytokines. RESULTS: On comparison, significantly lower frequency of CD3+ T cells were observed in COPD S as compared to CNS (p < 0.01) and CS (p < 0.01); CD4+ T cells were lower in COPD S (p < 0.05), COPD RS (p < 0.05) and CNS (p < 0.01) as compared to CS. CD8+ T cells were elevated in COPD S as compared to CS (p < 0.05). Lower frequency of cDCs were observed in COPD S as compared to CS (p < 0.05) and COPD RS as compared to CNS (p < 0.01) and CS (p < 0.01). Lower frequency of pDCs were observed in COPD RS as compared to COPD S (p < 0.05), CNS (p < 0.05) and CS (p < 0.01). Lower frequency of Tregs was observed in COPD S as compared to CNS (p < 0.05) and CS (p < 0.05). CONCLUSIONS: Characteristic changes observed indicate a significant impact of immune cells in the progression of the disease.

3.
Mol Neurobiol ; 60(5): 2910-2921, 2023 May.
Article in English | MEDLINE | ID: mdl-36749560

ABSTRACT

Fetal neural stem cells (FNSCs) present in the human fetal brain differentiate into cells of neuronal and glial lineages. The developing fetus is exposed to lower oxygen concentrations than adults, and this physiological hypoxia may influence the growth and differentiation of the FNSCs. This study aimed to evaluate the effect of hypoxia on the differentiation potential of human FNSCs isolated from the subventricular zone of aborted fetal brains (n = 5). FNSCs were isolated, expanded, and characterized by Nestin and Sox2 expression using immunocytochemistry and flow cytometry, respectively. These FNSCs were exposed to 20% oxygen (normoxia) and 0.2% oxygen (hypoxia) concentrations for 48 h, and hypoxia exposure (n = 5) was validated. Whole transcriptome analyses (Genespring GX13) of FNSCs exposed to hypoxia (Agilent 4 × 44 K human array slides) highlighted that genes associated with neurogenesis were enriched upon exposure to hypoxia. The pathway analysis of these enriched genes (using Metacore) showed the involvement of the WNT signaling pathway. Microarray analyses were validated using neuronal and glial lineage commitment markers, namely, NEUROG1, NEUROG2, ASCL1, DCX, GFAP, OLIG2, and NKX2.2, using qPCR (n = 9). DCX, ASCL1, NGN1, and GFAP protein expression was analyzed by Western blotting (n = 3). This demonstrated upregulation of the neuronal commitment markers upon hypoxia exposure, while no change was observed in astrocytic and oligodendrocyte lineage commitment markers. Increased expression of downstream targets of the WNT signaling pathway, TCF4 and ID2, by qPCR (n = 9) and increased protein expression of CTNNB1 (ß-catenin) and ID2 by Western blot (n = 3) indicated its involvement in mediating neuronal differentiation upon exposure to hypoxia.


Subject(s)
Neural Stem Cells , Wnt Signaling Pathway , Humans , Cells, Cultured , Neural Stem Cells/metabolism , Neurogenesis , Cell Differentiation , Fetus , Hypoxia/metabolism , Oxygen/pharmacology , Oxygen/metabolism
4.
J Vis Exp ; (186)2022 08 31.
Article in English | MEDLINE | ID: mdl-36121271

ABSTRACT

Fracture healing is a physiological process resulting in the regeneration of bone defects by the coordinated action of osteoblasts and osteoclasts. Osteoanabolic drugs have the potential to augment the repair of fractures but have constraints like high costs or undesirable side effects. The bone healing potential of a drug can initially be determined by in vitro studies, but in vivo studies are needed for the final proof of concept. Our objective was to develop a femur osteotomy rodent model that could help researchers understand the development of callus formation following fracture of the shaft of the femur and that could help establish whether a potential drug has bone healing properties. Adult male Wistar albino rats were used after Institutional Animal Ethics Committee clearance. The rodents were anesthetized, and under aseptic conditions, complete transverse fractures at the middle one-third of the shafts of the femurs were created using open osteotomy. The fractures were reduced and internally fixed using intramedullary K-wires, and secondary fracture healing was allowed to take place. After surgery, intraperitoneal analgesics and antibiotics were given for 5 days. Sequential weekly x-rays assessed callus formation. The rats were sacrificed based on radiologically pre-determined time points, and the development of the fracture callus was analyzed radiologically and using immunohistochemistry.


Subject(s)
Femoral Fractures , Animals , Femoral Fractures/diagnostic imaging , Femoral Fractures/surgery , Femur/diagnostic imaging , Femur/surgery , Fracture Healing/physiology , Male , Osteotomy , Rats , Rats, Wistar
5.
Genes (Basel) ; 13(3)2022 03 12.
Article in English | MEDLINE | ID: mdl-35328060

ABSTRACT

Hypoxic ischemic injury to the fetal and neonatal brain is a leading cause of death and disability worldwide. Although animal and culture studies suggest that glutamate excitotoxicity is a primary contributor to neuronal death following hypoxia, the molecular mechanisms, and roles of various neural cells in the development of glutamate excitotoxicity in humans, is not fully understood. In this study, we developed a culture model of human fetal neural stem cell (FNSC)-derived astrocytes and examined their glutamate uptake in response to hypoxia. We isolated, established, and characterized cultures of FNSCs from aborted fetal brains and differentiated them into astrocytes, characterized by increased expression of the astrocyte markers glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1) and EAAT2, and decreased expression of neural stem cell marker Nestin. Differentiated astrocytes were exposed to various oxygen concentrations mimicking normoxia (20% and 6%), moderate and severe hypoxia (2% and 0.2%, respectively). Interestingly, no change was observed in the expression of the glutamate transporter EAAT2 or glutamate uptake by astrocytes, even after exposure to severe hypoxia for 48 h. These results together suggest that human FNSC-derived astrocytes can maintain glutamate uptake after hypoxic injury and thus provide evidence for the possible neuroprotective role of astrocytes in hypoxic conditions.


Subject(s)
Astrocytes , Glutamic Acid , Neural Stem Cells , Astrocytes/metabolism , Cell Hypoxia , Cells, Cultured , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Glutamic Acid/metabolism , Humans , Neural Stem Cells/metabolism
6.
J Gastrointest Cancer ; 52(3): 882-891, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32816148

ABSTRACT

BACKGROUND: Colon cancer cells can migrate and metastasize by undergoing epithelial-to-mesenchymal transition (EMT). Mesenchymal stem cells (MSCs) are non-cancerous, multipotent adult stem cells, which can also migrate. In this study, we wanted to compare the biological, physical, and functional properties of these migratory cells. MATERIALS AND METHODS: HT-29 and HCT-116, two human colon carcinoma cell lines, represent less aggressive and more aggressive cancer cells, respectively. MSCs were isolated from human bone marrow. After confirming the identity of all the cell types, they were evaluated for E-cadherin, ß1-integrin, Vimentin, ZEB-1, ß-catenin, and 18S rRNA using Q-PCR. MMP-2 and MMP-9 activity were evaluated using gelatin zymography. Functional tests like wound healing assay, migration assay, and invasion assay were also done. Biomechanical properties like cell stiffness and non-specific adhesion (between indenter probe and cell membrane) were evaluated through nanoindentation using atomic force microscopy (AFM). RESULTS: Expression of EMT and stem cell markers showed typical expression patterns for HT-29, HCT-116, and MSCs. Functional tests showed that MSCs migrated faster than malignant cells. MMP-2 and MMP-9 activity reinforced this behavior. Interestingly, the migration/invasion capacity of MSCs was comparable to aggressive HCT-116, and more than HT-29. MSCs also showed the maximum cell stiffness and non-specific cell-probe adhesions, followed by HCT116 and HT29 cells. CONCLUSIONS: Our findings indicate that the migratory properties of MSCs is comparable or even greater than that of cancer cells and despite their high migration potential, they also have the maximum stiffness.


Subject(s)
Colonic Neoplasms/physiopathology , Epithelial-Mesenchymal Transition/physiology , Mesenchymal Stem Cells/metabolism , Adaptor Proteins, Signal Transducing/analysis , Cadherins/analysis , Cell Line, Tumor , Cell Movement , Colonic Neoplasms/pathology , Humans , In Vitro Techniques , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...