Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters











Publication year range
1.
Langmuir ; 40(29): 14811-14822, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38979753

ABSTRACT

Cancer is a major public health problem worldwide, and it is the second leading cause of death of humans in the world. The present study has been directed toward the preparation of methotrexate-loaded surface-modified solid lipid nanoparticles (SLNs) for potential use as a chemotherapeutic formulation for cancer therapy. A lipid (C14-AAP) derived from myristic acid (C14H30O2) and acetaminophen (AAP) was employed as a targeting ligand for human breast and lung cancer cells that overexpress the cyclooxygenases-2 (COX-2) enzyme. The SLNs consisting of stearic acid and C14-AAP were characterized by several methods, including dynamic light scattering (DLS), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), ultraviolet-visible (UV-vis) spectroscopy, high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM) techniques. An in vitro cell cytotoxicity study was done by carrying out an MTT assay and flow cytometry study in the human breast cancer (MCF7) and human lung cancer cell line (A549). The expression level of COX-2 enzyme in MCF7 and A549 cell lines was examined by reverse transcription polymerase chain reaction (RT-PCR). A high level of COX-2 expression was observed in both cell lines. In vitro cell cytotoxicity study in MC7 and A549 cell lines showed the surface-modified, methotrexate-loaded SLN is more effective in cell killing and induction of apoptotic death in both the cell lines than free methotrexate in MTT, flow cytometry, clonogenic assay, and Western blot studies. The surface-modified SLN was radiolabeled with 99mTc with %RCP greater than 95%. In vivo biodistribution study of the 99mTc-labeled SLN in melanoma tumor-bearing C57BL6 mice showed moderate tumor uptake of the radiotracer at 3 h post injection. The SPECT/CT image aligns with the biodistribution results. This study shows that AAP-modified SLNs could be a potential chemotherapeutic formulation for cancer therapy.


Subject(s)
Cyclooxygenase 2 , Methotrexate , Nanoparticles , Methotrexate/chemistry , Methotrexate/pharmacology , Humans , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/chemistry , Nanoparticles/chemistry , Animals , Mice , Lipids/chemistry , Surface Properties , Drug Carriers/chemistry , MCF-7 Cells , A549 Cells , Cell Survival/drug effects
2.
ACS Appl Bio Mater ; 7(5): 3403-3413, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38700026

ABSTRACT

The delivery of drugs to the brain in the therapy of diseases of the central nervous system (CNS) remains a continuing challenge because of the lack of delivery systems that can cross the blood-brain barrier (BBB). Therefore, there is a need to develop an innovative delivery method for the treatment of CNS diseases. Thus, we have investigated the interaction of γ-aminobutyric acid (GABA) and S-(-)-γ-amino-α-hydroxybutyric acid (GAHBA) with the GABA receptor by performing a docking study. Both GABA and GAHBA show comparable binding affinities toward the receptor. In this study, we developed surface-modified solid lipid nanoparticles (SLNs) using GAHBA-derived lipids that can cross the BBB. CLB-loaded SLNs were characterized by a number of methods including differential scanning calorimetry, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy. The blank and CLB-loaded SLN suspensions were found to exhibit good storage stability. Also, the SLNs showed a higher encapsulation efficiency for CLB drugs. In vitro release kinetics of CLB at physiological temperature was also investigated. The results of the in vitro cell cytotoxicity assay and flow cytometry studies in the human glioma U87MG cell line and human prostate cancer PC3 cell line suggested a higher efficacy of the GAHBA-modified CLB-loaded SLNs in U87MG cells. The transcription level of GABA receptor expression in the target organ and cell line was analyzed by a reverse transcription polymerase chain reaction study. The in vivo biodistribution and brain uptake in C57BL6 mice and SPECT/CT imaging in Wistar rats investigated using 99mTc-labeled SLN and autoradiography suggest that the SLNs have an increasing brain uptake. We have demonstrated the delivery of the anticancer drug chlorambucil (CLB) to glioma.


Subject(s)
Brain , Chlorambucil , Lipids , Nanoparticles , Particle Size , Chlorambucil/chemistry , Chlorambucil/pharmacology , Chlorambucil/administration & dosage , Nanoparticles/chemistry , Animals , Brain/metabolism , Lipids/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Surface Properties , Mice , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Drug Delivery Systems , Rats , Drug Carriers/chemistry , Cell Line, Tumor
3.
ACS Appl Bio Mater ; 7(3): 1703-1712, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38433388

ABSTRACT

Cationic bolaamphiphiles have gained significant attention in various research fields, including materials science, drug delivery, and gene therapy, due to their unique properties and potential applications. The objective of the current research is to develop more effective cationic bolaamphiphiles. Thus, we have designed and synthesized two cationic bolaamphiphiles (-(CH2)12(2,3-dihydroxy-N,N-dimethyl-N-(3-ureidopropyl)propan-1-aminium chloride))2 (C12(DDUPPAC)2)) and (-(CH2)12(N-(3-(carbamoyloxy)propyl)-2,3-dihydroxy-N,N-dimethylpropan-1-aminium chloride)2 (C12(CPDDPAC)2) containing urea and urethane linkages, respectively. We have investigated their self-assembly properties in water using several techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. Their biological applications, e.g., in vitro gene transfection, antibacterial activity, and cytotoxicity, were studied. Both bolaamphiphiles were observed to produce aggregates larger than spherical micelles above a relatively low critical aggregation concentration (cac). The calorimetric experiments suggested the thermodynamically favorable spontaneous aggregation of both bolaforms in water. The results of interaction studies led to the conclusion that C12(CPDDPAC)2 binds DNA with a greater affinity than C12(DDUPPAC)2. Also, C12(CPDDPAC)2 is found to act as a more efficient gene transfection vector than C12(DDUPPAC)2 in 264.7 cell lines. The in vitro cytotoxicity assay using MTT, however, revealed that neither of the bolaamphiphiles was toxic, even at higher quantities. Additionally, both bolaforms show beneficial antibacterial activity.


Subject(s)
Chlorides , Furans , Pyridones , Water , Transfection , Cell Line
4.
Langmuir ; 40(4): 2242-2253, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38221732

ABSTRACT

Gemini surfactants, due to their unique structural features and enhanced properties compared to conventional surfactants, are becoming more popular in the domain of colloid and interface science, drug delivery, and gene delivery science. This distinct class of surfactants forms a wide range of self-assembled aggregates depending on their chemical structure and environmental conditions. The present work aims to develop Gemini with three distinct chain lengths linked through the ester group and quaternary nitrogen head groups that can bind DNA molecules and ultimately serve as vectors for DNA transfection. Thus, we synthesized three distinct cationic Gemini with 12, 14, and 16 carbons in their tails and studied the effect of the hydrocarbon chain length on their physicochemical properties and biological applications. The self-assembly of these Geminis in aqueous solution was investigated by a number of techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. All three Gemini were extremely surface active and self-assembled above a very low critical micelle concentration. Calorimetric studies suggested the formation of thermodynamically favorable aggregates in an aqueous medium. Chain length dependence was observed in the size as well as the morphology of the aggregates. These Gemini ions were found to bind DNA strongly, as indicated by the high binding constant values. In vitro gene transfection studies using the RAW 264.7 cell line suggested that all three cationic Gemini had transfection efficiencies comparable to that of commercial standard turbofectamine. MTT assay was also performed for concentration selection while using these Gemini as transfection vectors. Overall, it was observed that Gemini had very little cytotoxicity within the investigated concentration range, highlighting the significance of the ester link within the structure. When compared with known antimicrobials such as kanamycin and ampicillin, all three Gemini furnished excellent antimicrobial activity in both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms.


Subject(s)
Anti-Infective Agents , DNA , Transfection , DNA/chemistry , Hydrocarbons , Surface-Active Agents/toxicity , Surface-Active Agents/chemistry , Anti-Infective Agents/toxicity
5.
Langmuir ; 39(29): 10021-10032, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37454394

ABSTRACT

Bolaamphiphiles or bolaforms have drawn particular interest in drug and gene delivery, and studies of bolaforms have been growing continuously. Bolaforms, due to their unique structure, exhibit specific self-assembly behavior in water. The present work aims to develop biodegradable cationic bolaforms with a better gene transfection ability. In this work, a novel cationic bolaform (Bola-1) with head groups bearing hydroxyl (OH) functionality was designed and synthesized to investigate self-assembly and gene transfection efficiency. The self-assembly behavior of Bola-1 in water was compared with that of the hydrochloride salt (Bola-2) of its precursor molecule to investigate the effect of the -OH functionality on their solution properties. Several techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy, were employed for the physicochemical characterization of Bola-1 and Bola-2. Despite the presence of polar urea groups in the spacer chain, both bolaforms were found to form spherical or elongated micelles above a relatively low critical aggregation concentration (CAC). The presence of the OH group was found to significantly affect the CAC value. The results of calorimetric measurements suggested a thermodynamically favorable aggregate formation in salt-free water. Despite stronger binding efficiency with calf thymus DNA, in vitro gene transfection studies performed using adherent cell Hek 293 suggested that both Bola-1 and Bola-2 have gene transfection efficiency comparable to that of turbofectamine standard. Both bolaforms were found to exhibit significant in vitro cytotoxicity at higher concentrations. Also, the bolaforms showed beneficial antibacterial activity at higher concentrations.


Subject(s)
Anti-Infective Agents , Water , Humans , HEK293 Cells , Transfection , Cations
6.
ACS Appl Bio Mater ; 6(7): 2785-2794, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37403739

ABSTRACT

Solid lipid nanoparticles (SLNs) are promising drug delivery vehicles for the delivery of various drugs, especially poorly water-soluble drugs. However, the aqueous stability, drug release, and biocompatibility of SLNs are some of the issues that need attention. In this work, curcumin-loaded SLNs were prepared, and morphology, particle size, and entrapment efficiency were studied. For this, two amino acid-derived lipids were developed. The effect of the polarity of the lipid head on the aqueous stability of the SLN dispersion was investigated. Based on the stability, particle size, and polydispersity, an optimum formulation was obtained. The curcumin entrapment efficiency of the SLNs was found to be greater than those reported in the literature. The entrapped curcumin, as well as curcumin-loaded SLN suspensions, exhibited improved storage stability. The in vitro release kinetics indicated an enhanced rate of drug release in the case of curcumin-loaded SLNs consisting of the lipid containing -OH groups at the lipid head. The pure lipid and the blank SLN were found to have no significant cytotoxicity, but curcumin and curcumin-loaded SLNs induced cell death in a concentration-dependent manner in both human prostatic adenocarcinoma PC3 cell line and human breast carcinoma MCF7 cell line. This study has proposed a potential semisynthetic lipid for the stable SLN suspension for the delivery of curcumin.


Subject(s)
Curcumin , Nanoparticles , Humans , Curcumin/pharmacology , Curcumin/chemistry , Lipids , Drug Delivery Systems , Nanoparticles/chemistry
7.
Langmuir ; 36(21): 5829-5838, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32388987

ABSTRACT

PEGylated vesicles are known to serve as blood-persistent drug-delivery systems (DDSs) with potential applications in intravenous drug administration. pH-responsive PEGylated vesicles are also among the most promising stimuli-responsive carriers for drug delivery and controlled release for cancer chemotherapy. Herein, we report design and synthesis of two novel pH-responsive amphiphiles by coupling a cholesterol (Chol) and poly(ethylene glycol) chain with l-cysteine amino acid through hydrolysable linkages. The objective of this work is to physicochemically characterize the nanoaggregates of the amphiphiles under different experimental conditions. We have demonstrated spontaneous vesicle formation by the amphiphiles in water using various spectroscopic, calorimetric, and microscopic techniques. The size of vesicles was observed to increase on reduction of solution pH and increase in amphiphile concentration. The vesicles were found to be sufficiently stable under physiological conditions and were shown to be able to encapsulate not only hydrophilic dyes in their aqueous core but also hydrophobic guest molecules in the bilayer membrane constituted by the Chol units. These nanosized vesicles exhibit pH-triggered release of encapsulated dye molecules in acidic pH. Thus, these spontaneously formed stable vesicles might hold potential as biocompatible DDSs in cancer chemotherapy.

8.
RSC Adv ; 10(54): 32522-32531, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-35516463

ABSTRACT

The development of efficient, biodegradable and biocompatible surfactants has become a pressing need because of adverse effects of surface-active compounds on the aquatic environment and human health. Cleavable surfactants containing a labile functional group have the ability to eliminate some of these problems. Consequently, PEGylated amphiphiles have found widespread applications in pharmaceutics, household purposes, and drug delivery. Herein we report synthesis and characterization of two novel amphiphiles which to our knowledge are the first examples of double PEG-tailed amphiphiles with an anionic head group. Considering their chemical structure, they are expected to be biodegradable, biocompatible, milder and less irritant than conventional surfactants. The solution behavior of these newly developed amphiphiles was thoroughly investigated in aqueous buffer (pH 7.0) at 25 °C. The surface activity of the compounds in aqueous buffer was studied by surface tension measurements. The self-assembly properties were investigated by various techniques such as fluorescence and NMR spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and isothermal titration calorimetry. Both molecules were found to be surface active in water and exhibit spontaneous vesicle formation in the absence of any additives at room temperature. As in the cases of conventional surfactants, the self-assembly is driven by the hydrophobic effect. The vesicles produced in aqueous media were shown to encapsulate hydrophobic dyes and exhibit structural transitions upon addition of salts. The sensitivity of the vesicles to change in environments qualifies them for potential use in drug delivery.

9.
RSC Adv ; 10(65): 39894, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-35532397

ABSTRACT

[This corrects the article DOI: 10.1039/D0RA05613H.].

10.
Soft Matter ; 15(3): 433-441, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30570630

ABSTRACT

The generally poor mechanical stability of hydrogels limits their use as functional materials for many biomedical applications. In this work, a poly(vinyl alcohol) (PVA) embedded hybrid hydrogel of a ß-amino acid-containing Fmoc-protected tripeptide was produced at physiological pH (7.4) and room temperature. The hydrogel system was characterized by a number of techniques, including UV-vis, fluorescence, circular dichroism, FT-IR spectroscopy, electron microscopy, and rheology. While the tripeptide-based pure hydrogel was found to be unstable after ca. half an hour, addition of PVA, a water soluble polymer, increased the temporal and mechanical stability of the hydrogel. A rheological step-strain experiment demonstrates that the peptide-polymer hydrogel is thixotropic. Results from a fluorescence probe study and transmission electron microscopy reveal that addition of PVA increases both the fibre diameter and entanglement. Circular dichroism spectra of the hydrogels confirm the formation of aggregates with supramolecular chirality. The thixotropic nature of the hydrogel has been exploited to entrap and release doxorubicin, an anticancer drug, under physiological conditions. Furthermore, an MTT assay of the Fmoc-tripeptide using AH927 cells confirmed its cytocompatibility, which broadens the utility of the hybrid gel for biomedical applications.


Subject(s)
Carnosine/antagonists & inhibitors , Hydrogels/chemistry , Oligopeptides/chemistry , Polyvinyl Alcohol/chemistry , Drug Carriers/chemistry , Drug Liberation , Shear Strength
11.
Langmuir ; 35(4): 848-861, 2019 01 29.
Article in English | MEDLINE | ID: mdl-29923405

ABSTRACT

The design and synthesis of biocompatible surfactants are important for a wide range of applications in cosmetics, personal care products, and nanomedicine. This feature article summarizes our studies over the past 8 years on the design, synthesis, surface activity, and self-assembly of a series of unconventional low-molecular-mass amphiphiles containing a poly(ethylene glycol) (PEG) tail or spacer and different ionic or zwitterionic headgroups, including carboxylate, sulfonate, and quaternary ammonium salts. Despite having a so-called polar PEG chain as a tail or spacer, these ionic amphiphiles are found to have a tendency to adsorb at the air/water interface and self-assemble in pH 7.0 buffers at 298 K in the same way that conventional hydrocarbon tail surfactants do. However, they are observed to be relatively less surface-active compared to hydrocarbon tail surfactants. Although these amphiphilic molecules have less surface activity, they do self-assemble in aqueous buffer at 298 K, producing a range of microstructures, including spherical micelles, disclike micelles, and vesicles. In fact, our group is the first to report the self-assembly of PEG-tailed ionic amphiphiles in water at room temperature. Some of these molecules are also found to gel various organic liquids on heat-cool treatment or by ultrasound irradiation. We think that the present article will arouse general interest among researchers working toward the development of new biocompatible amphiphiles and soft materials.

12.
J Colloid Interface Sci ; 529: 314-324, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29920442

ABSTRACT

Self-assembly of surfactants is influenced by various intermolecular interactions and molecular structure, which dictate packing of molecules in the aggregate and its microstructure. Hydrogen-bonding between amide groups plays a key role in the self-assembly process of N-acyl amino acid surfactants (NAAS). The self-assembly properties of two NAAS, sodium N-lauroyl sarcosinate (SLS) and sodium N-lauroyl glycinate (SLG) that differ only in the head-group structure were compared in aqueous and aqueo-organic media by using a number of methods, including surface tension fluorescence, dynamic light scattering, calorimetry, and microscopy. It was observed that aggregate formation is more favoured in SLG. Studies revealed that while SLS formed small spherical micelles, SLG produced unilamellar vesicles in pH 7 buffer above critical micelle concentration at 25 °C. The stability of SLG vesicles with respect to pH and temperature was also investigated. Furthermore, both SLG and SLS were found to gelify aquo-organic mixtures of varying composition upon heat-cool treatment. Their gelation behaviour was compared by measuring minimum gelation concentration, molecular packing, and morphology and mechanical stability of the thermoreversible gels. The difference in self-assembly behaviour in water as well as in aqueo-organic mixtures was attributed to the steric repulsion and hydrogen-bonding interaction at the head-group of the molecules.

13.
Langmuir ; 33(45): 12989-12999, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29064707

ABSTRACT

A series of ß-amino acid containing tripeptides has been designed and synthesized in order to develop oligopeptide-based, thermoreversible, pH-sensitive, and proteolytically stable hydrogels. The Fmoc [N-(fluorenyl-9-methoxycarbonyl)]-protected tripeptides were found to produce hydrogels in both pH 7 and 2 buffers at a very low concentration (<0.2% w/v). It has been shown that the Fmoc group plays an important role in the gelation process. Also a dependence of gelation ability on hydrophobicity of the side chain of the Fmoc-protected α-amino acid was observed. The effect of the addition of inorganic salts on the gelation process was investigated as well. Spectroscopic studies indicated formation of J-aggregates through π-π stacking interactions between Fmoc groups in solution as well as in the gel state. In the gel phase, these self-assembling tripeptides form long interconnected nanofibrils leading to the formation of 3-dimensional network structure. The hydrogels were characterized by various techniques, including field emission electron microscopy, transmission electron microscopy, atomic force microscopy, rheology, Fourier transform IR, circular dichroism (CD), and wide-angle X-ray diffraction (WAXD) spectroscopy. The CD studies and WAXD analyses show an antiparallel ß-sheet structure in the gel state. l-Phenylalanine and l-tyrosine containing tripeptides formed helical aggregates with handedness opposite to those containing l-valine and l-leucine residues. The mechanical stability of the hydrogels was found to depend on the hydrophobicity of the side chain of the tripeptide as well as on the pH of the solution. Also, the tripeptides exhibit in vitro proteolytic stability against proteinase K enzyme.

14.
J Colloid Interface Sci ; 507: 1-10, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28779647

ABSTRACT

Cholesterol (Chol) is a ubiquitous steroidal component of cell membrane and is known to modulate the packing of phospholipids within the bilayer. Thus, Chol has been frequently used in the formulation and study of artificial "model membranes" like vesicles and liposomes. In this work, we have developed a novel anionic surfactant by conjugating two biomolecules, cholesterol and γ-aminobutyric acid via a urethane linkage. We have studied its physicochemical behavior in aqueous buffer. The surfactant has been shown to spontaneously form small unilamellar vesicles above a very low critical concentration in aqueous neutral buffer at room temperature. The vesicle phase was characterized by use of fluorescence probe, transmission electron microscopy and dynamic light scattering (DLS) techniques. The vesicle bilayer was found to be much less polar as well as more viscous compared to the bulk water. The vesicle stability with respect to change of temperature, pH, and ageing time was investigated by fluorescence probe and DLS techniques. The loading efficiency of the vesicles for the hydrophobic drug, curcumin, was determined and its release under physiological condition was studied. The in vitro cellular uptake of curcumin-loaded vesicles to human breast cancer cell line (MDA-MB-231) also was investigated. The MTT assay showed that the surfactant was non-cytotoxic up to a relatively high concentration.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Cholesterol/chemistry , Curcumin/chemistry , Surface-Active Agents/chemistry , gamma-Aminobutyric Acid/chemistry , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Curcumin/administration & dosage , Drug Carriers , Drug Liberation , Dynamic Light Scattering/methods , Fluorescence , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Liposomes , Mice , Micelles , NIH 3T3 Cells , Particle Size , Surface Properties , Viscosity
15.
Langmuir ; 33(31): 7741-7750, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28702997

ABSTRACT

Monolayer lipid membrane formation based on self-assembly of bolaamphiphiles containing hydrophobic spacer are well-established in the literature, but monolayer vesicle formation by so-called hydrophilic poly(ethylene glycol) (PEG) spacer has not been reported to date. Here, a novel l-cysteine-derived bolaamphiphile with PEG as spacer has been developed and characterized. The interfacial properties and the solution behavior of the amphiphile were investigated in pH 7.0 at 25 °C. The self-assembly properties of the bolaamphiphile in aqueous buffer were investigated by using different techniques, such as surface tensiometry, fluorescence spectroscopy, UV-vis spectroscopy, isothermal titration calorimetry, dynamic light scattering, transmission electron microscopy, and atomic force microscopy. Surprisingly, despite having so-called polar spacer in between two polar head groups, it exhibits formation of microstructures in aqueous buffer as well as in water at 25 °C. The molecule undergoes self-organization leading to the formation of monolayer vesicles with hydrodynamic diameters between 100 and 250 nm in a wide range of concentration. The thermodynamic parameters clearly suggest that the aggregate formation is mainly driven by the hydrophobic effect. The monolayer vesicles were found to form at a very low concentration (≥0.63 mM) and within a wide pH range (2-10). The vesicles exhibit excellent shelf life at physiological temperature.

16.
J Colloid Interface Sci ; 501: 22-33, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28432913

ABSTRACT

Stimuli-sensitive polymersomes are one of the important vehicles and have been extensively studied as smart drug delivery system. Polymersomes have added advantage over the micelles because of having the ability to carry not only hydrophobic but also hydrophilic guest in their aqueous core. Among various stimuli, the change of pH and redox reaction is very important for drug delivery purpose especially for anticancer drug. Therefore, in this work, two poly(ethylene glycol) methyl ether methacrylate (mPEG) containing hydrophilic random anionic copolymers, poly[(2-hydroxyethyl methacrylate-3,3'-dithiodipropanoic acid)x-co-(poly(ethylene glycol) methyl ether methacrylate)y], poly[(HEMA-DTDPA)x-co-mPEGy] with different copolymer ratios were designed and synthesized. The self-assembly behaviour of these copolymers were studied by use of various techniques, including fluorescence spectroscopy, light scattering, and electron and optical microscopy. Both the copolymers were observed to form negatively charged polymersomes spontaneously in aqueous media at pH 7. The polymersomes were shown to successfully encapsulate hydrophobic as well as hydrophilic guests. The polymersomes of both the polymers showed pH- and redox-sensitive release of encapsulated guest leading to a very good system for cytoplasmic delivery. The polymers were found to be nontoxic and hemocompatible up to a reasonably high concentration. Also the polymers did not show any denaturizing effect on the secondary structure of carrier protein, human serum albumin. It was concluded that these two dual stimuli-sensitive cytocompatible polymersomes can have potential use as drug delivery system in cancer chemotherapy.


Subject(s)
Delayed-Action Preparations/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/administration & dosage , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Micelles , Oxidation-Reduction , Serum Albumin, Human/chemistry
17.
Langmuir ; 33(2): 543-552, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27989124

ABSTRACT

In our recent reports, we have shown that when a poly(ethylene glycol) (PEG) chain is covalently linked to any ionic group, the resultant molecule behaves like an amphiphile. Depending upon the nature of ionic head groups, they self-assemble to form micelles or vesicles, in which the PEG chain constitutes the micellar core or vesicle bilayer. In this study, we intend to examine what happens when both hydrocarbon (HC) and PEG chains are attached to a carboxylate head group. Therefore, we have synthesized two novel amphiphiles in which a PEG and a HC chain is covalently linked to l-cysteine. The surface activities and the solution behavior of the sodium salts of these amphiphiles were investigated at neutral pH. The amphiphiles self-organize to form large unilamellar vesicles in dilute solutions, which transformed into small micelles at higher concentrations. The HC chains of the molecules have been shown to constitute the bilayer membrane of the vesicles and core of micelles. In acidic pH, the amphiphiles were found to form large disklike micelles. The thermodynamic parameters of self-assembly formation were also measured by isothermal titration calorimetry. The vesicle and micelle formation was found to be spontaneous and thermodynamically favorable. The thermal stability of the micelles at neutral and acidic pH was studied. The addition of cholesterol was observed to increase the physical stability of vesicles.


Subject(s)
Cysteine/chemistry , Lipid Bilayers/chemistry , Polyethylene Glycols/chemistry , Surface-Active Agents/chemistry , Micelles , Thermodynamics
18.
Macromol Biosci ; 17(4)2017 04.
Article in English | MEDLINE | ID: mdl-27879056

ABSTRACT

Stimuli-sensitive polymeric vesicles or polymersomes as self-assembled colloidal nanocarriers have received paramount importance for their integral role as delivery system for therapeutics and biotherapeutics. This work describes spontaneous polymersome formation at pH 7, as evidenced by surface tension, steady state fluorescence, dynamic light scattering, and microscopic studies, by three hydrophilic random cationic copolymers synthesized using N,N-(dimethylamino)ethyl methacrylate (DMAEM) and methoxy poly(ethylene glycol) monomethacrylate in different mole ratios. The results suggest that methoxy poly(ethylene glycol) chains constitute the bilayer membrane of the polymersomes and DMAEM projects toward water constituting the positively charged surface. The polymersomes have been observed to release their encapsulated guest at acidic pH as a result of transformation into polymeric micelles. All these highly biocompatible cationic polymers show successful gene transfection ability as nonviral vector on human cell line with different potential. Thus these polymers prove their utility as a potential delivery system for hydrophilic model drug as well as genetic material.


Subject(s)
Drug Delivery Systems/methods , Gene Transfer Techniques , Polymers/chemistry , Cations , Cell Line, Tumor , Cell Survival , Circular Dichroism , DNA/metabolism , Drug Liberation , Electrophoretic Mobility Shift Assay , Humans , Hydrodynamics , Hydrogen-Ion Concentration , Materials Testing , Microscopy, Electron, Transmission , Particle Size , Plasmids/metabolism , Polymers/chemical synthesis , Proton Magnetic Resonance Spectroscopy , Serum Albumin/metabolism , Spectrometry, Fluorescence , Surface Tension , Temperature , Transfection
19.
Colloids Surf B Biointerfaces ; 147: 422-433, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27566227

ABSTRACT

A series of novel two-component organogel systems comprising of amines and anhydrides was developed. These two-component systems in aromatic solvents exhibit instantaneous gelation during mixing at room temperature without the requirement of any external stimulus such as heat, sonication, etc. The corresponding alcohols, however, failed to produce gel under similar condition. The structure-property relationship was investigated. The effect of mixing ratio of the two components as well as the effect of solvents on gelation was studied. A detail characterization of the organogels using electron microscopy, FTIR, (1)H NMR and X-ray diffraction spectroscopy, differential scanning calorimetry and rheology suggested formation of a hydrogen-bonded complex that induces creation of three dimensional entangled network structures which immobilize the solvent showing macroscopic gelation. The packing of hydrocarbon chains of the amines and π-π stacking interaction in aromatic amines were observed to play a decisive role in altering the thermal and mechanical stability of the organogels. The organogels formed by mixing aromatic amines with the anhydride exhibit exceptional thermal and mechanical stability compared to the aliphatic amines.


Subject(s)
Amines/chemistry , Anhydrides/chemistry , Gels/chemistry , Surface-Active Agents/chemistry , Calorimetry, Differential Scanning , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Rheology , Temperature , X-Ray Diffraction
20.
Colloids Surf B Biointerfaces ; 139: 107-16, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26704991

ABSTRACT

The development of stimuli-responsive biocompatible polymersomes is important for the improvement of drug delivery systems. Herein, we report the spontaneous formation of polymersomes by three random copolymers, l-cys-graft-poly[GMA-co-mPEG300], containing different ratios of l-cysteine (Cys) and methoxy poly(ethylene glycol) (mPEG) covalently linked to the polymer backbone. Cysteine was conjugated to the polymeric backbone through metal free thiol-epoxy 'click' chemistry at final step. The copolymers, without having any typical hydrophobe in the backbone, are sufficiently surface active. The self-assembly formation of the copolymers was studied in aqueous solution by steady-state fluorescence probe technique. Spontaneous polymersomes formation, without any help of stimuli and organic solvent, above a relatively low critical aggregation concentration was confirmed by dynamic light scattering and microscopic techniques. Polymersomes were shown to be able to encapsulate not only hydrophilic dye in their aqueous core but also hydrophobic guest molecules in the bilayer membrane constituted by the mPEG chains. The polymersomes are sufficiently stable under physiological condition. These nano-sized polymersomes exhibit pH-triggered release of encapsulated guest under acidic pH. All three copolymers were found to be completely cell viable and hemocompatible up to very high concentration. Their ability to cross cell membrane was demonstrated by use of a fluorescent dye-tagged polymer. Further, these copolymers did not show any denaturising effect on the secondary structure of the human serum albumin, a transport protein in the blood. Based on the results of this study it is concluded that these spontaneously formed stable and biocompatible polymersomes can have potential use as drug delivery systems.


Subject(s)
Cysteine/chemistry , Drug Delivery Systems , Epoxy Compounds/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Cell Survival/drug effects , Click Chemistry , Cysteine/pharmacology , Epoxy Compounds/pharmacology , Fluorescein-5-isothiocyanate/chemistry , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Methacrylates/pharmacology , Polyethylene Glycols/pharmacology , Polymerization , Serum Albumin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL