Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39326934

ABSTRACT

Heavy metals like arsenic is ubiquitously present in the environment. Geologic and anthropogenic activities are the root cause behind high concentration of arsenic in natural water bodies demanding strict monitoring of water quality prior to human consumption and utilization. In the present study, we have employed Daphnia magna for studying the biological effects of environmentally relevant high concentration of arsenic in water. In acute toxicity study, the LC50 value for 24hr exposure was found to be 2.504 mg/L, which gradually decreased with increase in time period (24hr- 96hr) to 2.011 mg/ L at 96hr. Sub-chronic toxicity was evaluated over 12 days using sub-lethal concentrations (5 %, 10 %, 15 %, and 20 % of the 24-hr LC50). Survivability in Daphnia showed a decreasing trend from 96 % to 91 % with increase in arsenic concentrations from 5 % of LC50 24 hr value to 20 % of LC 50 24hr value respectively. Alongside decreased survivability, there was a significant reduction in body size, with organisms exposed to the highest concentration of arsenic measuring 0.87±0.01 mm compared to 1.51±0.10 mm in the control group. Reproductive potential declined concentration dependently with exposure, with the highest reduction observed at 20 % of LC50 24hr value, where offspring numbers decreased to 7±1 from 23±5 in the control. Heart rate decreased in concentration and time-dependent manners, with the lowest rates observed at the highest arsenic concentration (279±16 bpm after 24hr and 277±27 bpm after 48hr). Comet assay and micronucleus assay conducted after 48 hrs of exposure revealed concentration-dependent genotoxic effects in Daphnia magna. Our results indicate negative impact on physiology and reproduction of Daphnia magna at environmentally existent concentration of arsenic. Also Daphnia magna could serve as a sensitive test system for investigating arsenic contamination in water bodies.


Subject(s)
Arsenic , Daphnia , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Arsenic/toxicity , DNA Damage/drug effects , Reproduction/drug effects , Toxicity Tests, Acute , Lethal Dose 50 , Micronucleus Tests , Mutagens/toxicity , Daphnia magna
2.
Article in English | MEDLINE | ID: mdl-37491115

ABSTRACT

Tributyltin (TBT) is used in many commercial applications, including pesticides and antifouling paints, due to its biocidal properties. We examined the cytotoxicity and genotoxicity of TBT in the early chick embryo (Gallus gallus domesticus). Chick embryos (11 days) were treated with various doses of TBT to measure LD50 values for 24, 48, and 72 h exposures, which were determined to be 110, 54, and 18 µg/egg, respectively. The embryos were exposed to sub-lethal doses of TBT for evaluation of cytotoxicity and genotoxicity. An increase in the incidence of micronuclei (MN) was observed but it was not statistically significant. Induction of other nuclear abnormalities (ONA) after 72 h TBT exposure was significant. A significant increase in comet assay tail DNA content was also detected in TBT-exposed embryos. Cytotoxicity was also evidenced by alteration in the polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) ratio and by an increase in the erythroblast population in treated organisms. The cytotoxicity and genotoxicity of TBT may have long-term complications in later stages of the life cycle.


Subject(s)
Chickens , DNA Damage , Animals , Chick Embryo , Micronucleus Tests , Comet Assay
SELECTION OF CITATIONS
SEARCH DETAIL