Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Sci Total Environ ; 904: 166165, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37574065

ABSTRACT

Microplastics (MPs) are a new and lesser-known pollutant that has intrigued the interest of scientists all over the world in recent decades. MP (<5mm in size) can enter marine environments such as mangrove forests in a variety of ways, interfering with the health of the environment and organisms. Mangroves are now getting increasingly exposed to microplastic contamination due to their proximity to human activities and their position as critical transitional zones between land and sea. The present study reviews the status of MPs contamination specifically in mangrove ecosystems situated in Asia. Different sources and characteristics of MPs, subsequent deposition of MPs in mangrove water and sediments, bioaccumulation in different organisms are discussed in this context. MP concentrations in sediments and organisms were higher in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater than in pristine areas. The distribution of MPs varies from organism to organism in mangrove ecosystems, and is significantly influenced by their morphometric characteristics, feeding habits, dwelling environment etc. Mangrove plants can accumulate microplastics in their roots, stem and leaves through absorption, adsorption and entrapment helping in reducing abundance of microplastic in the surrounding environment. Several bacterial and fungal species are reported from these mangrove ecosystems, which are capable of degrading MPs. The bioremediation potential of mangrove plants offers an innovative and sustainable approach to mitigate microplastic pollution. Diverse mechanisms of MP biodegradation by mangrove dwelling organisms are discussed in this context. Biotechnological applications can be utilized to explore the genetic potential of the floral and faunal species found in the Asian mangroves. Detailed studies are required to monitor, control, and evaluate MP pollution in sediments and various organisms in mangrove ecosystems in Asia as well as in other parts of the world.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Ecosystem , Bioaccumulation , Environmental Monitoring , Water Pollutants, Chemical/analysis , Asia
3.
Chemosphere ; 338: 139542, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37474031

ABSTRACT

Microplastics are emerging pollutants that are ubiquitously present in environment. Occurrence and dispersion of microplastics in the soil can pose a considerable risk to soil health and biodiversity, including the plants grown in the soil. Uptake and bioaccumulation of microplastics can have detrimental effects on different plant species. Additionally, the co-presence of microplastics and arsenic can cause synergistic, antagonistic, or potentiating toxic impacts on plants. However, limited studies are available on the combined effects of microplastics and arsenic on plants. This paper elucidates both the individual and synergistic effects of microplastics and arsenic on plants. At the outset, the paper highlighted the presence and degradation of microplastics in soil. Subsequently, the interactions between microplastics and plants, accumulation, and influences of microplastics on plant growth and metabolism were explained with underlying mechanisms. Combined effects of microplastics and arsenic on plant growth, metabolism, and toxicity were discussed thereafter. Combined toxic effects of microplastics and arsenic on plants can have detrimental implications on environment, ecosystems and biodiversity. Further investigations on food chain and human health are needed in the context of microplastic-arsenic interactions.


Subject(s)
Arsenic , Soil Pollutants , Humans , Microplastics/metabolism , Plastics/toxicity , Plastics/metabolism , Arsenic/analysis , Ecosystem , Soil Pollutants/analysis , Plants/metabolism , Soil
4.
Environ Chem Lett ; 21(3): 1787-1810, 2023.
Article in English | MEDLINE | ID: mdl-36785620

ABSTRACT

Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.

5.
Environ Sci Pollut Res Int ; 30(60): 124934-124949, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36719577

ABSTRACT

The rapid growth in the population, industrial developments, and climate change over the century have contributed to a significant rise in aquatic pollution leading to a scarcity of clean, reliable, and sustainable water sources and supply. Exposure through ingestion, inhalation, and dermal absorption of organic/inorganic compounds such as heavy metals, pharmaceuticals, dyes, and persistent organic pollutants (POPs) discharged from municipalities, hospitals, textile industries, food, and agricultural sectors has caused adverse health outcomes in aquatic and terrestrial organisms. Owing to the high surface area, photocatalytic activity, antimicrobial, antifouling, optical, electronic, and magnetic properties, the application of nanotechnology offers unique opportunities in advanced wastewater management strategies over traditional approaches. Carbon nanomaterials and associated composites such as single-walled carbon nanotubes (SWCNT), multiwalled carbon nanotubes (MWCNT), and carbon nanotubes (CNT) buckypaper membranes have demonstrated efficiency in adsorption, photocatalytic activity, and filtration of contaminants and thus show immense potentiality in wastewater management. This review focuses on the application of CNTs in the sequestration of organic and inorganic contaminants from the aquatic environment. It also sheds light on the aquatic pollutant desorption processes, current safety regulations, and toxic responses associated with CNTs. Critical knowledge gaps involving CNT synthesis, surface modification processes, CNT-environment interactions, and risk assessments are further identified and discussed.


Subject(s)
Environmental Pollutants , Metals, Heavy , Nanotubes, Carbon , Water Pollutants, Chemical , Wastewater , Nanotubes, Carbon/toxicity , Organic Chemicals , Water Pollutants, Chemical/analysis , Adsorption
6.
Environ Res ; 216(Pt 1): 114438, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36179880

ABSTRACT

COVID-19 pandemic has led to the generation of massive plastic wastes, comprising of onetime useable gloves, masks, tissues, and other personal protective equipment (PPE). Recommendations for the employ of single-use disposable masks made up of various polymeric materials like polyethylene, polyurethane, polyacrylonitrile, and polypropylene, polystyrene, can have significant aftermath on environmental, human as well as animal health. Improper disposal and handling of healthcare wastes and lack of proper management practices are creating serious health hazards and an extra challenge for the local authorities designated for management of solid waste. Most of the COVID-19 medical wastes generated are now being treated by incineration which generates microplastic particles (MPs), dioxin, furans, and various toxic metals, such as cadmium and lead. Moreover, natural degradation and mechanical abrasion of these wastes can lead to the generation of MPs which cause a serious health risk to living beings. It is a major threat to aquatic lives and gets into foods subsequently jeopardizing global food safety. Moreover, the presence of plastic is also considered a threat owing to the increased carbon emission and poses a profound danger to the global food chain. Degradation of MPs by axenic and mixed culture microorganisms, such as bacteria, fungi, microalgae etc. can be considered an eco-sustainable technique for the mitigation of the microplastic menace. This review primarily deals with the increase in microplastic pollution due to increased use of PPE along with different disinfection methods using chemicals, steam, microwave, autoclave, and incineration which are presently being employed for the treatment of COVID-19 pandemic-related wastes. The biological treatment of the MPs by diverse groups of fungi and bacteria can be an alternative option for the mitigation of microplastic wastes generated from COVID-19 healthcare waste.


Subject(s)
COVID-19 , Microplastics , Animals , Humans , Plastics/toxicity , COVID-19/prevention & control , Pandemics , Delivery of Health Care
7.
Arch Microbiol ; 204(5): 251, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35411412

ABSTRACT

Environmental contamination by toxic effluents discharged by anthropogenic activities including the mining industries has increased extensively in the recent past. Microbial communities and their biofilms inhabiting these extreme habitats have developed different adaptive strategies in metabolizing and transforming the persistent pollutants. They also play a crucial role in natural attenuation of these abandoned mining sites and act as a major driver of many biogeochemical processes, which helps in ecological rehabilitation and is a viable approach for restoration of wide stretches of land. In this review, the types of mine wastes including the overburden and mine drainage and the types of microbial communities thriving in such environments were probed in detail. The types of biofilms formed along with their possible role in metal bioremediation were also reviewed. This review also provides an overview of the shift in microbial communities in natural reclamation process and also provides an insight into the restoration of the enzyme activities of the soils which may help in further revegetation of abundant mining areas in a sustainable manner. Moreover, the role of indigenous microbiota in bioremediation of heavy metals and their plant growth-promoting activity weres discussed to assess their role in phytoremedial processes.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Biodegradation, Environmental , Metals, Heavy/toxicity , Mining , Soil , Soil Pollutants/analysis
8.
Chemosphere ; 156: 69-75, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27176938

ABSTRACT

Arthrobacter sp. SUK 1201, a chromate resistant and reducing bacterium isolated from chromite mine overburden of Sukinda valley, Odisha, India has been evaluated for its hexavalent chromium [Cr(VI)] reduction potential using cell-free culture filtrate as extracellular chromate reductase enzyme. Production of the enzyme was enhanced in presence of Cr(VI) and its reducing efficiency was increased with increasing concentration of Cr(VI). The Michaelis-Menten constant (Km) and the maximum specific velocity (Vmax) of the extracellular Cr(VI) reductase were calculated to be 54.03 µM Cr(VI) and 5.803 U mg(-1) of protein respectively showing high affinity towards Cr(VI). The reducing activity of the enzyme was maximum at pH 6.5-7.5 and at a temperature of 35 °C and was dependent on NADH. The enzyme was tolerant to different metals such as Mn(II), Mg(II) and Fe(III) and was able to reduce Cr(VI) present in chromite mine seepage. These findings suggest that the extracellular chromate reductase of Arthrobacter sp. SUK 1201 has a great promise for use in Cr(VI) detoxification under different environmental conditions, particularly in the mining waste water treatment systems.


Subject(s)
Arthrobacter/enzymology , Chromium/chemistry , Oxidoreductases/chemistry , Biodegradation, Environmental , Chromium/metabolism , Ferric Compounds , Filtration , India , Industrial Waste , Metals/chemistry , Metals/metabolism , Mining , Oxidation-Reduction , Oxidoreductases/metabolism , Temperature
9.
Braz J Microbiol ; 44(1): 307-15, 2013.
Article in English | MEDLINE | ID: mdl-24159321

ABSTRACT

Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2-8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr(+6) reducing activity in chemically defined Vogel Bonner (VB) broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr(+6) (MIC 8.6-17.8 mM), the isolates showed tolerance to Ni(+2), Fe(+3), Cu(+2) and Co(+2) but were extremely sensitive to Hg(+2) followed by Cd(+2), Mn(+2) and Zn(+2). In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr(+6) in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr(+6) present in mine seepage when grown in mine seepage supplemented with VB concentrate.

10.
J Hazard Mater ; 213-214: 200-6, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22361630

ABSTRACT

Arthrobacter sp. SUK 1201, a chromium resistant and reducing bacterium having 99% sequence homology of 16S rDNA with Arthrobacter sp. GZK-1 was isolated from chromite mine overburden dumps of Orissa, India. The objective of the present study was to optimize the cultural conditions for chromate reduction by Arthrobacter sp. SUK 1201. The strain showed 67% reduction of 2mM chromate in 7 days and was associated with the formation of green insoluble precipitate, which showed characteristic peak of chromium in to energy dispersive X-ray analysis. However, Fourier transform infrared spectra have failed to detect any complexation of end products of Cr(VI) reduction with the cell mass. Reduction of chromate increased with increased cell density and was maximum at 10(10)cells/ml, but the reduction potential decreased with increase in Cr(VI) concentration. Chromate reducing efficiency was promoted when glycerol and glucose was used as electron donors. Optimum pH and temperature of Cr(VI) reduction was 7.0 and 35 °C respectively. The reduction process was inhibited by several metal ions and metabolic inhibitors but not by Cu(II) and DNP. These findings suggest that Arthrobacter sp. SUK 1201 has great promise for use in Cr(VI) detoxification under a wide range of environmental conditions.


Subject(s)
Arthrobacter/chemistry , Arthrobacter/growth & development , Chromates/chemistry , Chromium , Mining , Biodegradation, Environmental , Culture Media , Electrons , Environmental Restoration and Remediation , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Metals/chemistry , Oxidation-Reduction , Polymerase Chain Reaction , RNA, Bacterial/metabolism , RNA, Ribosomal, 16S/metabolism , Soil Microbiology , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...