Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Am J Epidemiol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227151

ABSTRACT

Meta-analysis is a powerful analytic method for summarizing effect estimates across studies. However, conventional meta-analysis often assumes a linear exposure-outcome relationship and does not account for variability over the exposure ranges. In this work, we first used simulation techniques to illustrate that the linear-based meta-analytical approach may result in oversimplistic effect estimation based on three plausible non-linear exposure-outcome curves (S-shape, inverted U-shape, and M-shape). We showed that subgroup meta-analysis that stratifies on exposure levels can investigate non-linearity and identify the consistency of effect magnitudes in these simulated examples. Next, we examined the heterogeneity of effect estimates across exposure ranges in two published linear-based meta-analyses of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on changes in mean birth weight or risk of preterm birth. The re-analysis found some varying effect sizes and potential heterogeneity when restricting to different PFAS exposure ranges, but findings were sensitive to the cut-off choices used to rank the exposure levels. Finally, we discussed methodological challenges and recommendations for detecting and interpreting potential non-linear associations in meta-analysis. Using meta-analysis without accounting for exposure range could contribute to literature inconsistency for exposure-induced health effects and impede evidence-based policymaking. Therefore, investigating result heterogeneity by exposure range is recommended.

2.
Lancet Planet Health ; 8(7): e506-e514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969477

ABSTRACT

BACKGROUND: High ambient temperature is increasingly common due to climate change and is associated with risk of adverse pregnancy outcomes. Acute lymphoblastic leukaemia is the most common malignancy in children, the incidence is increasing, and in the USA disproportionately affects Latino children. We aimed to investigate the potential association between high ambient temperature in pregnancy and risk of childhood acute lymphoblastic leukaemia. METHODS: We used data from California birth records (children born from Jan 1, 1982, to Dec 31, 2015) and California Cancer Registry (those diagnosed with childhood cancer in California from Jan 1, 1988, to Dec 31, 2015) to identify acute lymphoblastic leukaemia cases diagnosed in infants and children aged 14 years and younger and controls matched by sex, race, ethnicity, and date of last menstrual period. Ambient temperatures were estimated on a 1-km grid. The association between ambient temperature and acute lymphoblastic leukaemia was evaluated per gestational week, restricted to May-September, adjusting for confounders. Bayesian meta-regression was applied to identify critical exposure windows. For sensitivity analyses, we evaluated a 90-day pre-pregnancy period (assuming no direct effect before pregnancy), adjusted for relative humidity and particulate matter less than 2·5 microns in aerodynamic diameter, and constructed an alternatively matched dataset for exposure contrast by seasonality. FINDINGS: 6849 cases of childhood acute lymphoblastic leukaemia were identified and, of these, 6258 had sufficient data for study inclusion. We also included 307 579 matched controls. Most of the study population were male (174 693 [55·7%] of the 313 837 included in the study) and of Latino ethnicity (174 906 [55·7%]). The peak association between ambient temperature and risk of acute lymphoblastic leukaemia was observed in gestational week 8, where a 5°C increase was associated with an odds ratio of 1·07 (95% CI 1·04-1·11). A slightly larger effect was seen among Latino children (OR 1·09 [95% CI 1·04-1·14]) than non-Latino White children (OR 1·05 [1·00-1·11]). The sensitivity analyses supported the results of the main analysis. INTERPRETATION: Our findings suggest an association between high ambient temperature in early pregnancy and risk of childhood acute lymphoblastic leukaemia. Further replication and investigation of mechanistic pathways might inform mitigation strategies. FUNDING: Yale Center on Climate Change and Health, The National Center for Advancing Translational Science, National Institutes of Health.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Female , Pregnancy , Child, Preschool , California/epidemiology , Child , Infant , Male , Adolescent , Hot Temperature/adverse effects , Infant, Newborn , Risk Factors , Hispanic or Latino/statistics & numerical data
3.
One Earth ; 7(6): 1044-1055, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39036466

ABSTRACT

The western United States is home to most of the nation's oil and gas production and, increasingly, wildfires. We examined historical threats of wildfires for oil and gas wells, the extent to which wildfires are projected to threaten wells as climate change progresses, and exposure of human populations to these wells. From 1984-2019, we found that cumulatively 102,882 wells were located in wildfire burn areas, and 348,853 people were exposed (resided ≤ 1 km). During this period, we observed a five-fold increase in the number of wells in wildfire burn areas and a doubling of the population within 1 km of these wells. These trends are projected to increase by late century, likely threatening human health. Approximately 2.9 million people reside within 1 km of wells in areas with high wildfire risk, and Asian, Black, Hispanic, and Native American people have disproportionately high exposure to wildfire-threatened wells.

4.
Am J Public Health ; 114(9): 923-934, 2024 09.
Article in English | MEDLINE | ID: mdl-38991173

ABSTRACT

Objectives. To evaluate associations between oil and gas development (OGD) and mental health using cross-sectional data from a preconception cohort study, Pregnancy Study Online. Methods. We analyzed baseline data from a prospective cohort of US and Canadian women aged 21 to 45 years who were attempting conception without fertility treatment (2013-2023). We developed residential proximity measures for active OGD during preconception, including distance from nearest site. At baseline, participants completed validated scales for perceived stress (10-item Perceived Stress Scale, PSS) and depressive symptoms (Major Depression Inventory, MDI) and reported psychotropic medication use. We used log-binomial regression and restricted cubic splines to estimate prevalence ratios (PRs) and 95% confidence intervals (CIs). Results. Among 5725 participants across 37 states and provinces, residence at 2 km versus 20 to 50 km of active OGD was associated with moderate to high perceived stress (PSS ≥ 20 vs < 20: PR = 1.08; 95% CI = 0.98, 1.18), moderate to severe depressive symptoms (MDI ≥ 20 vs < 20: PR = 1.27; 95% CI = 1.11, 1.45), and psychotropic medication use (PR = 1.11; 95% CI = 0.97, 1.28). Conclusions. Among North American pregnancy planners, closer proximity to OGD was associated with adverse preconception mental health symptomatology. (Am J Public Health. 2024;114(9):923-934. https://doi.org/10.2105/AJPH.2024.307730).


Subject(s)
Depression , Mental Health , Humans , Female , Adult , Cross-Sectional Studies , Prospective Studies , Mental Health/statistics & numerical data , Canada/epidemiology , Depression/epidemiology , Middle Aged , Stress, Psychological/epidemiology , United States/epidemiology , Young Adult , Oil and Gas Industry , Residence Characteristics/statistics & numerical data , Pregnancy
5.
Environ Int ; 188: 108767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795658

ABSTRACT

BACKGROUND: Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are persistent organic pollutants emitted from industrial sources. Residential proximity to these emissions has been associated with risk of non-Hodgkin lymphoma (NHL) in a limited number of studies. METHODS: We evaluated associations between residential proximity to PCDD/F-emitting facilities and NHL in the NIH-AARP Diet and Health Study (N = 451,410), a prospective cohort enrolled in 1995-1996 in 6 states and 2 U.S. cities. We linked enrollment addresses with a U.S. Environmental Protection Agency database of 4,478 historical PCDD/F sources with estimated toxic equivalency quotient (TEQ) emissions. We evaluated associations between NHL and exposures during a historical period prior to enrollment (1980-1995) using an average emissions index, weighted by toxicity, distance, and wind direction (AEI-W [g TEQ/km2]) within 3-, 5- and 10 km of residences. We also evaluated proximity-only metrics indicating the presence/absence of one or more facilities within each distance, and metrics calculated separately for each facility type. We used Cox regression to estimate associations (hazard ratio, HR; 95 % confidence interval, 95 %CI) with NHL and major subtypes, adjusting for demographic, lifestyle, and dietary factors. RESULTS: A total of 6,467 incident cases of NHL were diagnosed through 2011. Participants with an AEI-W ≥ 95th percentile had elevated risk of NHL compared to those unexposed at 3 km (HR = 1.16; 95 %CI = 0.89-1.52; p-trend = 0.24), 5 km (HR = 1.20;95 %CI = 0.99-1.46;p-trend = 0.05) and 10 km (HR = 1.15; 95 %CI = 0.99-1.34; p-trend = 0.04). We found a positive association at 5 km with follicular lymphoma (HR≥95vs.0 = 1.62; 95 %CI = 0.98-2.67; p-trend = 0.05) and a suggestive association for diffuse large B-cell lymphoma (HR≥95vs.0 = 1.40; 95 %CI = 0.91-2.14; p-trend = 0.11). NHL risk was also associated with high emissions from coal-fired power plants within 10 km (HR≥95vs.0 = 1.42; 95 %CI = 1.09-1.84; p-trend = 0.05). CONCLUSIONS: Residential proximity to relatively high dioxin emissions from industrial sources may increase the risk of NHL and specific subtypes.


Subject(s)
Lymphoma, Non-Hodgkin , Humans , Lymphoma, Non-Hodgkin/epidemiology , Lymphoma, Non-Hodgkin/chemically induced , Middle Aged , United States/epidemiology , Male , Female , Dioxins/analysis , Aged , Environmental Exposure/statistics & numerical data , Prospective Studies , Air Pollutants/analysis
7.
J Expo Sci Environ Epidemiol ; 34(3): 512-517, 2024 May.
Article in English | MEDLINE | ID: mdl-38448680

ABSTRACT

Self-reported distances to industrial sources have been used in epidemiology as proxies for exposure to environmental hazards and indicators of awareness and perception of sources. Unconventional oil and gas development (UOG) emits pollutants and has been associated with adverse health outcomes. We compared self-reported distance to the nearest UOG well to the geographic information system-calculated distance for 303 Pennsylvania, Ohio, and West Virginia residents using Cohen's Weighted Kappa. Agreement was low (Kappa = 0.18), and self-reports by Ohioans (39% accuracy) were more accurate than West Virginians (22%) or Pennsylvanians (13%, both p < 0.05). Of the demographic characteristics studied, only educational attainment was related to reporting accuracy; residents with 12-16 years of education were more accurate (31.3% of group) than those with <12 or >16 years (both 16.7%). Understanding differences between objective and subjective measures of UOG proximity could inform studies of perceived exposures or risks and may also be relevant to adverse health effects. IMPACT: We compared objective and self-reported measures of distance to the nearest UOG well for 303 Appalachian Basin residents. We found that residents' self-reported distance to the nearest UOG well had limited agreement with the true calculated distance category. Our results can be used to inform the collection and contextualize the use of self-reported data in communities exposed to UOGD. Self-reported metrics can be used in conjunction with objective assessments and can be informative regarding how potentially exposed populations perceive environmental exposures or risks and could provide insights into awareness of distance-related policies, such as setbacks.


Subject(s)
Environmental Exposure , Oil and Gas Fields , Self Report , Humans , West Virginia , Pennsylvania , Ohio , Environmental Exposure/analysis , Female , Male , Adult , Middle Aged , Geographic Information Systems , Aged , Adolescent , Young Adult , Oil and Gas Industry
8.
Sci Total Environ ; 919: 170922, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38350573

ABSTRACT

Nitrate levels are increasing in water resources across the United States and nitrate ingestion from drinking water has been associated with adverse health risks in epidemiologic studies at levels below the maximum contaminant level (MCL). In contrast, dietary nitrate ingestion has generally been associated with beneficial health effects. Few studies have characterized the contribution of both drinking water and dietary sources to nitrate exposure. The Agricultural Health Study is a prospective cohort of farmers and their spouses in Iowa and North Carolina. In 2018-2019, we assessed nitrate exposure for 47 farmers who used private wells for their drinking water and lived in 8 eastern Iowa counties where groundwater is vulnerable to nitrate contamination. Drinking water and dietary intakes were estimated using the National Cancer Institute Automated Self-Administered 24-Hour Dietary Assessment tool. We measured nitrate in tap water and estimated dietary nitrate from a database of food concentrations. Urinary nitrate was measured in first morning void samples in 2018-19 and in archived samples from 2010 to 2017 (minimum time between samples: 2 years; median: 7 years). We used linear regression to evaluate urinary nitrate concentrations in relation to total nitrate, and drinking water and dietary intakes separately. Overall, dietary nitrate contributed the most to total intake (median: 97 %; interquartile range [IQR]: 57-99 %). Among 15 participants (32 %) whose drinking water nitrate concentrations were at/above the U.S. Environmental Protection Agency MCL (10 mg/L NO3-N), median intake from water was 44 % (IQR: 26-72 %). Total nitrate intake was the strongest predictor of urinary nitrate concentrations (R2 = 0.53). Drinking water explained a similar proportion of the variation in nitrate excretion (R2 = 0.52) as diet (R2 = 0.47). Our findings demonstrate the importance of both dietary and drinking water intakes as determinants of nitrate excretion.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , United States , Nitrates/analysis , Iowa , Farmers , Prospective Studies , Water Supply , Diet , Water Pollutants, Chemical/analysis
9.
Environ Justice ; 17(1): 31-44, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38389752

ABSTRACT

Background: Community socioeconomic deprivation (CSD) may be related to higher oil and natural gas development (OGD) exposure. We tested for distributive and benefit-sharing environmental injustice in Pennsylvania's Marcellus Shale by examining (1) whether OGD and waste disposal occurred disproportionately in more deprived communities and (2) discordance between the location of land leased for OGD and where oil and gas rights owners resided. Materials and Methods: Analyses took place at the county subdivision level and considered OGD wells, waste disposal, and land lease agreement locations from 2005 to 2019. Using 2005-2009 American Community Survey data, we created a CSD index relevant to community vulnerability in suburban/rural areas. Results: In adjusted regression models accounting for spatial dependence, we observed no association between the CSD index and conventional or unconventional drilled well presence. However, a higher CSD index was linearly associated with odds of a subdivision having an OGD waste disposal site and receiving a larger volume of waste. A higher percentage of oil and gas rights owners lived in the same county subdivision as leased land when the community was least versus most deprived (66% vs. 56% in same county subdivision), suggesting that individuals in more deprived communities were less likely to financially benefit from OGD exposure. Discussion and Conclusions: We observed distributive environmental injustice with respect to well waste disposal and benefit-sharing environmental injustice related to oil and rights owner's residential locations across Pennsylvania's Marcellus Shale. These results add evidence of a disparity between exposure and benefits resulting from OGD.

10.
J Expo Sci Environ Epidemiol ; 34(1): 3-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37739995

ABSTRACT

BACKGROUND: Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS: In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS: Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT: Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.


Subject(s)
Arsenic , Drinking Water , Child , Humans , Water Quality , Reproducibility of Results , Aging
11.
Article in English | MEDLINE | ID: mdl-38148338

ABSTRACT

BACKGROUND: Residential mobility can introduce exposure misclassification in pediatric epidemiology studies using birth address only. OBJECTIVE: We examined whether residential mobility varies by sociodemographic factors and urbanicity/rurality among children with cancer. METHODS: Our study included 400 children born in Pennsylvania during 2002-2015 and diagnosed with leukemia at ages 2-7 years. Addresses were obtained from state registries at birth and diagnosis. We considered three aspects of mobility between birth and diagnosis: whether a child moved, whether a mover changed census tract, and distance moved. We evaluated predictors of these aspects in urban- and rural-born children using chi-square, t-tests, and regression analyses. RESULTS: Overall, 58% of children moved between birth and diagnosis; suburban/rural-born children were more likely to move than urban-born children (67% versus 57%). The mean distance moved was 16.7 km in suburban/rural-born and 14.8 km in urban-born movers. In urban-born children, moving between birth and diagnosis was associated with race, education, participation in the Nutrition Program for Women, Infants and Children (WIC), and census tract-level income (all χ2 p < 0.01). Urban-born movers tended to be born in a census tract with a higher Social Vulnerability Index than non-movers (t-test p < 0.01). No factors were statistically significantly associated with any of the residential mobility metrics in suburban/rural-born children, although the sample size was small. IMPACT STATEMENT: In this study of a vulnerable population of children with cancer, we found that rural-born children were more likely to move than urban-born children, however, the frequency of movers changing census tracts was equivalent. Mobility in urban-born children, but not rural-born, was associated with several social factors, although the sample size for rural-born children was small. Mobility could be an important source of misclassification depending on the spatial heterogeneity and resolution of the exposure data and whether the social factors are related to exposures or health outcomes. Our results highlight the importance of considering differences in mobility between urban and rural populations in spatial research.

12.
Environ Sci Technol ; 57(45): 17452-17464, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37923386

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a class of toxic organic compounds that have been widely used in consumer applications and industrial activities, including oil and gas production. We measured PFAS concentrations in 45 private wells and 8 surface water sources in the oil and gas-producing Doddridge, Marshall, Ritchie, Tyler, and Wetzel Counties of northern West Virginia and investigated relationships between potential PFAS sources and drinking water receptors. All surface water samples and 60% of the water wells sampled contained quantifiable levels of at least one targeted PFAS compound, and four wells (8%) had concentrations above the proposed maximum contaminant level (MCL) for perfluorooctanoic acid (PFOA). Individual concentrations of PFOA and perfluorobutanesulfonic acid exceeded those measured in finished public water supplies. Total targeted PFAS concentrations ranged from nondetect to 36.8 ng/L, with surface water concentrations averaging 4-fold greater than groundwater. Semiquantitative, nontargeted analysis showed concentrations of emergent PFAS that were potentially higher than targeted PFAS. Results from a multivariate latent variable hierarchical Bayesian model were combined with insights from analyses of groundwater chemistry, topographic characteristics, and proximity to potential PFAS point sources to elucidate predictors of PFAS concentrations in private wells. Model results reveal (i) an increased vulnerability to contamination in upland recharge zones, (ii) geochemical controls on PFAS transport likely driven by adsorption, and (iii) possible influence from nearby point sources.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Groundwater , Water Pollutants, Chemical , West Virginia , Bayes Theorem , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Water Supply , Groundwater/chemistry , Drinking Water/analysis , Alkanesulfonic Acids/analysis
13.
Environ Sci Technol ; 57(48): 19702-19712, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37982799

ABSTRACT

The production of fossil fuels, including oil, gas, and coal, retains a dominant share in US energy production and serves as a major anthropogenic source of methane, a greenhouse gas with a high warming potential. In addition to directly emitting methane into the air, fossil fuel production can release methane into groundwater, and that methane may eventually reach the atmosphere. In this study, we collected 311 water samples from an unconventional oil and gas (UOG) production region in Pennsylvania and an oil and gas (O&G) and coal production region across Ohio and West Virginia. Methane concentration was negatively correlated to distance to the nearest O&G well in the second region, but such a correlation was shown to be driven by topography as a confounding variable. Furthermore, sulfate concentration was negatively correlated with methane concentration and with distance to coal mining in the second region, and these correlations were robust even when considering topography. We hypothesized that coal mining enriched sulfate in groundwater, which in turn inhibited methanogenesis and enhanced microbial methane oxidation. Thus, this study highlights the complex interplay of multiple factors in shaping groundwater methane concentrations, including biogeochemical conversion, topography, and conventional fossil extraction.


Subject(s)
Fossil Fuels , Groundwater , Oil and Gas Fields , Methane , Appalachian Region , Coal , Sulfates
15.
J Expo Sci Environ Epidemiol ; 33(5): 737-747, 2023 09.
Article in English | MEDLINE | ID: mdl-37730931

ABSTRACT

BACKGROUND: Pediatric thyroid diseases have been increasing in recent years. Environmental risk factors such as exposures to chemical contaminants may play a role but are largely unexplored. Archived neonatal dried blood spots (DBS) offer an innovative approach to investigate environmental exposures and effects. OBJECTIVE: In this pilot study, we applied a new method for quantifying per- and polyfluoroalkyl substances (PFAS) to 18 archived DBS from babies born in California from 1985-2018 and acquired thyroid hormone measurements from newborn screening tests. Leveraging these novel data, we evaluated (1) changes in the concentrations of eight PFAS over time and (2) the relationship between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics to inform future research. METHODS: PFAS concentrations in DBS were measured using ultra-high-performance liquid chromatography-mass spectrometry. Summary statistics and non-parametric Wilcoxon rank-sum and Kruskal-Wallis tests were used to evaluate temporal changes in PFAS concentrations and relationships between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics. RESULTS: The concentration and detection frequencies of several PFAS (PFOA, PFOS, and PFOSA) declined over the assessment period. We observed that the timing of specimen collection in hours after birth was related to thyroid hormone but not PFAS concentrations, and that thyroid hormones were related to some PFAS concentrations (PFOA and PFOS). IMPACT STATEMENT: This pilot study examines the relationship between concentrations of eight per- and polyfluoroalkyl substances (PFAS), thyroid hormone levels, and neonatal characteristics in newborn dried blood spots (DBS) collected over a period of 33 years. To our knowledge, 6 of the 22 PFAS we attempted to measure have not been quantified previously in neonatal DBS, and this is the first study to examine both PFAS and thyroid hormone concentrations using DBS. This research demonstrates the feasibility of using newborn DBS for quantifying PFAS exposures in population-based studies, highlights methodological considerations in the use of thyroid hormone data for future studies using newborn DBS, and indicates potential relationships between PFAS concentrations and thyroid hormones for follow-up in future research.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Infant, Newborn , Humans , Child , Pilot Projects , Environmental Pollutants/analysis , Thyroid Hormones , Environmental Exposure
16.
Environ Health Perspect ; 131(9): 97006, 2023 09.
Article in English | MEDLINE | ID: mdl-37702489

ABSTRACT

BACKGROUND: Parabens, found in everyday items from personal care products to foods, are chemicals with endocrine-disrupting activity, which has been shown to influence reproductive function. OBJECTIVES: This study investigated whether urinary concentrations of methylparaben, propylparaben, or butylparaben were associated with the urinary metabolome during the periconceptional period, a critical window for female reproductive function. Changes to the periconceptional urinary metabolome could provide insights into the mechanisms by which parabens could impact fertility. METHODS: Urinary paraben concentrations were measured in paired pre- and postconception urine samples from 42 participants in the Early Pregnancy Study, a prospective cohort of 221 women attempting to conceive. We performed untargeted and targeted metabolomics analyses using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. We used principal component analysis, orthogonal partial least-squares discriminant analysis, and permutation testing, coupled with univariate statistical analyses, to find metabolites associated with paraben concentration at the two time points. Potential confounders were identified with a directed acyclic graph and used to adjust results with multivariable linear regression. Metabolites were identified using fragmentation data. RESULTS: Seven metabolites were associated with paraben concentration (variable importance to projection score >1, false discovery rate-corrected q-value<0.1). We identified four diet-related metabolites to the Metabolomics Standards Initiative (MSI) certainty of identification level 2, including metabolites from smoke flavoring, grapes, and olive oil. One metabolite was identified to the class level only (MSI level 3). Two metabolites were unidentified (MSI level 4). After adjustment, three metabolites remained associated with methylparaben and propylparaben, two of which were diet-related. No metabolomic markers of endocrine disruption were associated with paraben concentrations. DISCUSSION: This study identified novel relationships between urinary paraben concentrations and diet-related metabolites but not with metabolites on endocrine-disrupting pathways, as hypothesized. It demonstrates the feasibility of integrating untargeted metabolomics data with environmental exposure information and epidemiological adjustment for confounders. The findings underscore a potentially important connection between diet and paraben exposure, with applications to nutritional epidemiology and dietary exposure assessment. https://doi.org/10.1289/EHP12125.


Subject(s)
Metabolomics , Parabens , Pregnancy , Humans , Female , Prospective Studies , Metabolome
17.
Environ Res ; 237(Pt 2): 117092, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37683785

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that induce oxidative inflammatory responses and disrupt the endocrine and central nervous systems, all of which can influence sleep. OBJECTIVE: To investigate the association between PFAS exposure and sleep health measures in U.S. adults. METHODS: We analyzed serum concentration data of four PFAS [perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] reported for 8913 adults in NHANES 2005-2014. Sleep outcomes, including trouble sleeping, having a diagnosis of sleep disorder, and recent daily sleep duration classified as insufficient or excessive sleep (<6 or >9 h/day) were examined. Weighted logistic regression was used to estimate the association between the sleep outcomes and each PFAS modeled continuously (log2) or in exposure tertiles. We applied quantile g-computation to estimate the effect of the four PFAS as a mixture on the sleep outcomes. We conducted a quantitative bias analysis to assess the potential influence of self-selection and uncontrolled confounding. RESULTS: We observed some inverse associations between serum PFAS and trouble sleeping or sleep disorder, which were more consistent for PFOS (e.g., per log2-PFOS (ng/ml) and trouble sleeping OR = 0.93, 95%CI: 0.89, 0.98; sleep disorder OR = 0.89, 95%CI: 0.83, 0.95). Per quartile increase of the PFAS mixture was inversely associated with trouble sleeping and sleep disorder. No consistent associations were found for sleep duration across analyses. Our bias analysis suggests that the finding on sleep disorder could be explained by a moderate level of self-selection and negative confounding effects. CONCLUSIONS: We found no evidence to suggest exposure to four legacy PFAS worsened self-reported sleep health among U.S. adults. While some inverse associations between specific PFAS and sleep disorder were observed, self-selection and uncontrolled confounding biases may play a role in these findings.

18.
medRxiv ; 2023 May 19.
Article in English | MEDLINE | ID: mdl-37293058

ABSTRACT

Background: High ambient temperature is increasingly common due to climate change and is associated with risk of adverse pregnancy outcomes. Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, the incidence is increasing, and in the United States it disproportionately affects Latino children. We aimed to investigate the potential association between high ambient temperature in pregnancy and risk of childhood ALL. Methods: We used data from California birth records (1982-2015) and California Cancer Registry (1988-2015) to identify ALL cases diagnosed <14 years and 50 times as many controls matched by sex, race/ethnicity, and date of last menstrual period. Ambient temperatures were estimated on a 1-km grid. Association between ambient temperature and ALL was evaluated per gestational week, restricted to May-September, adjusting for confounders. Bayesian meta-regression was applied to identify critical exposure windows. For sensitivity analyses, we evaluated a 90-day pre-pregnancy period (assuming no direct effect before pregnancy) and constructed an alternatively matched dataset for exposure contrast by seasonality. Findings: Our study included 6,258 ALL cases and 307,579 controls. The peak association between ambient temperature and risk of ALL was observed in gestational week 8, where a 5 °C increase was associated with an odds ratio of 1.09 (95% confidence interval 1.04-1.14) and 1.05 (95% confidence interval 1.00-1.11) among Latino and non-Latino White children, respectively. The sensitivity analyses supported this. Interpretation: Our findings suggest an association between high ambient temperature in early pregnancy and risk of childhood ALL. Further replication and investigation of mechanistic pathways may inform mitigation strategies.

19.
Geohealth ; 7(4): e2022GH000758, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37064218

ABSTRACT

Unconventional oil and gas (UOG) development, made possible by horizontal drilling and high-volume hydraulic fracturing, has been fraught with controversy since the industry's rapid expansion in the early 2000's. Concerns about environmental contamination and public health risks persist in many rural communities that depend on groundwater resources for drinking and other daily needs. Spatial disparities in UOG risks can pose distributive environmental injustice if such risks are disproportionately borne by marginalized communities. In this paper, we analyzed groundwater vulnerability to contamination from UOG as a physically based measure of risk in conjunction with census tract level sociodemographic characteristics describing social vulnerability in the northern Appalachian Basin. We found significant associations between elevated groundwater vulnerability and lower population density, consistent with UOG development occurring in less densely populated rural areas. We also found associations between elevated groundwater vulnerability and lower income, higher proportions of elderly populations, and higher proportion of mobile homes, suggesting a disproportionate risk burden on these socially vulnerable groups. We did not find a statistically significant association between elevated groundwater vulnerability and populations of racial/ethnic minorities in our study region. Household surveys provided empirical support for a relationship between sociodemographic characteristics and capacity to assess and mitigate exposures to potentially contaminated water. Further research is needed to probe if the observed disparities translate to differences in chemical exposure and adverse health outcomes.

20.
Environ Epidemiol ; 7(2): e246, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37064423

ABSTRACT

Energy policy decisions are driven primarily by economic and reliability considerations, with limited consideration given to public health, environmental justice, and climate change. Moreover, epidemiologic studies relevant for public policy typically focus on immediate public health implications of activities related to energy procurement and generation, considering less so health equity or the longer-term health consequences of climate change attributable to an energy source. A more integrated, collective consideration of these three domains can provide more robust guidance to policymakers, communities, and individuals. Here, we illustrate how these domains can be evaluated with respect to natural gas as an energy source. Our process began with a detailed overview of all relevant steps in the process of extracting, producing, and consuming natural gas. We synthesized existing epidemiologic and complementary evidence of how these processes impact public health, environmental justice, and climate change. We conclude that, in certain domains, natural gas looks beneficial (e.g., economically for some), but when considered more expansively, through the life cycle of natural gas and joint lenses of public health, environmental justice, and climate change, natural gas is rendered an undesirable energy source in the United States. A holistic climate health equity framework can inform how we value and deploy different energy sources in the service of public health.

SELECTION OF CITATIONS
SEARCH DETAIL