Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37276112

ABSTRACT

This work presents the detailed characterization and analysis of recently reported magnetoelastic high-overtone bulk acoustic resonators (ME-HBARs), which are multimode RF-acoustic (phononic) resonators operating in the S -band. These unique devices are fabricated by microtransfer printing (MTP) piezoelectric GaN transducers onto a ferrimagnetic yttrium iron garnet (YIG) substrate. The YIG substrate also supports spin waves (magnons) when biased with an external magnetic field. The resulting phonon-magnon hybridization can be used to suppress or tune the acoustic modes of the ME-HBAR. The experiment spans 66 distinct acoustic resonance modes from 2.4 to 3 GHz, each of which can be suppressed or tuned as much as ±6 MHz, with a bias magnetic field ≤ 0.21 T. The experimental ME-HBAR data show good agreement with analytical modeling of the magnetoelastic hybridization in YIG. Such ME-HBARs can be used as dynamically tunable or switchable resonators, oscillators, comb filters, or frequency selective limiters in RF signal processing subcomponents. By integrating incompatible materials (YIG, epitaxial GaN) and disparate functionalities (spin waves, acoustic waves) into one hybrid multidomain system, this work also demonstrates the power and broad scope of the MTP technique.

2.
Small Methods ; 6(12): e2200916, 2022 12.
Article in English | MEDLINE | ID: mdl-36319445

ABSTRACT

Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms , Mice , Animals , Magnetite Nanoparticles/therapeutic use , Hyperthermia, Induced/methods , Heating , Magnetic Fields , Hyperthermia , Neoplasms/therapy , Nitrogen
3.
Pharmaceutics ; 12(11)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113767

ABSTRACT

Herein, we report a novel therapy for prostate cancer based on systemically delivered magnetic hyperthermia. Conventional magnetic hyperthermia is a form of thermal therapy where magnetic nanoparticles delivered to cancer sites via intratumoral administration produce heat in the presence of an alternating magnetic field (AMF). To employ this therapy for prostate cancer tumors that are challenging to inject intratumorally, we designed novel nanoclusters with enhanced heating efficiency that reach prostate cancer tumors after systemic administration and generate desirable intratumoral temperatures upon exposure to an AMF. Our nanoclusters are based on hydrophobic iron oxide nanoparticles doped with zinc and manganese. To overcome the challenges associated with the poor water solubility of the synthesized nanoparticles, the solvent evaporation approach was employed to encapsulate and cluster them within the hydrophobic core of PEG-PCL (methoxy poly(ethylene glycol)-b-poly(ε-caprolactone))-based polymeric nanoparticles. Animal studies demonstrated that, following intravenous injection into mice bearing prostate cancer grafts, the nanoclusters efficiently accumulated in cancer tumors within several hours and increased the intratumoral temperature above 42 °C upon exposure to an AMF. Finally, the systemically delivered magnetic hyperthermia significantly inhibited prostate cancer growth and did not exhibit any signs of toxicity.

4.
Front Robot AI ; 7: 588391, 2020.
Article in English | MEDLINE | ID: mdl-33501346

ABSTRACT

Soft robotics as a field of study incorporates different mechanisms, control schemes, as well as multifunctional materials to realize robots able to perform tasks inaccessible to traditional rigid robots. Conventional methods for controlling soft robots include pneumatic or hydraulic pressure sources, and some more recent methods involve temperature and voltage control to enact shape change. Magnetism was more recently introduced as a building block for soft robotic design and control, with recent publications incorporating magnetorheological fluids and magnetic particles in elastomers, to realize some of the same objectives present in more traditional soft robotics research. This review attempts to organize and emphasize the existing work with magnetism and soft robotics, specifically studies on magnetic elastomers, while highlighting potential avenues for further research enabled by these advances.

5.
ACS Nano ; 13(6): 6383-6395, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31082199

ABSTRACT

Despite its promising therapeutic potential, nanoparticle-mediated magnetic hyperthermia is currently limited to the treatment of localized and relatively accessible cancer tumors because the required therapeutic temperatures above 40 °C can only be achieved by direct intratumoral injection of conventional iron oxide nanoparticles. To realize the true potential of magnetic hyperthermia for cancer treatment, there is an unmet need for nanoparticles with high heating capacity that can efficiently accumulate at tumor sites following systemic administration and generate desirable intratumoral temperatures upon exposure to an alternating magnetic field (AMF). Although there have been many attempts to develop the desired nanoparticles, reported animal studies reveal the challenges associated with reaching therapeutically relevant intratumoral temperatures following systemic administration at clinically relevant doses. Therefore, we developed efficient magnetic nanoclusters with enhanced heating efficiency for systemically delivered magnetic hyperthermia that are composed of cobalt- and manganese-doped, hexagon-shaped iron oxide nanoparticles (CoMn-IONP) encapsulated in biocompatible PEG-PCL (poly(ethylene glycol)- b-poly(ε-caprolactone))-based nanocarriers. Animal studies validated that the developed nanoclusters are nontoxic, efficiently accumulate in ovarian cancer tumors following a single intravenous injection, and elevate intratumoral temperature up to 44 °C upon exposure to safe and tolerable AMF. Moreover, the obtained results confirmed the efficiency of the nanoclusters to generate the required intratumoral temperature after repeated injections and demonstrated that nanocluster-mediated magnetic hyperthermia significantly inhibits cancer growth. In summary, this nanoplatform is a milestone in the development of systemically delivered magnetic hyperthermia for the treatment of cancer tumors that are difficult to access for intratumoral injection.


Subject(s)
Hyperthermia, Induced/methods , Magnetic Fields , Magnetite Nanoparticles/chemistry , Nanoconjugates/chemistry , Animals , Cell Line, Tumor , Female , Ferric Compounds/chemistry , Humans , Lactones/chemistry , Magnetite Nanoparticles/therapeutic use , Mice , Neoplasms, Experimental/therapy , Polyethylene Glycols/chemistry
6.
Adv Mater ; 29(34)2017 Sep.
Article in English | MEDLINE | ID: mdl-28691378

ABSTRACT

Low-loss magnetization dynamics and strong magnetoelastic coupling are generally mutually exclusive properties due to opposing dependencies on spin-orbit interactions. So far, the lack of low-damping, magnetostrictive ferrite films has hindered the development of power-efficient magnetoelectric and acoustic spintronic devices. Here, magnetically soft epitaxial spinel NiZnAl-ferrite thin films with an unusually low Gilbert damping parameter (<3 × 10-3 ), as well as strong magnetoelastic coupling evidenced by a giant strain-induced anisotropy field (≈1 T) and a sizable magnetostriction coefficient (≈10 ppm), are reported. This exceptional combination of low intrinsic damping and substantial magnetostriction arises from the cation chemistry of NiZnAl-ferrite. At the same time, the coherently strained film structure suppresses extrinsic damping, enables soft magnetic behavior, and generates large easy-plane magnetoelastic anisotropy. These findings provide a foundation for a new class of low-loss, magnetoelastic thin film materials that are promising for spin-mechanical devices.

7.
Int J Pharm ; 458(1): 169-80, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24091153

ABSTRACT

A multifunctional tumor-targeting delivery system was developed and evaluated for an efficient treatment of drug-resistant ovarian cancer by combinatorial therapeutic modality based on chemotherapy and mild hyperthermia. The engineered iron oxide nanoparticle (IONPs)-based nanocarrier served as an efficient delivery vehicle for doxorubicin and provided the ability to heat cancer cells remotely upon exposure to an alternating magnetic field (AMF). The nanocarrier was additionally modified with polyethylene glycol and LHRH peptide to improve its biocompatibility and ability to target tumor cells. The synthesized delivery system has an average size of 97.1 nm and a zeta potential close to zero, both parameters favorable for increased stability in biological media and decreased elimination by the immune system. The nanocarrier demonstrated faster drug release in acidic conditions that mimic the tumor environment. It was also observed that the LHRH targeted delivery system could effectively enter drug resistant ovarian cancer cells, and the fate of doxorubicin was tracked with fluorescence microscope. Mild hyperthermia (40°C) generated by IONPs under exposure to AMF synergistically increased the cytotoxicity of doxorubicin delivered by the developed nanocarrier to cancer cells. Thus, the developed IONPs-based delivery system has high potential in the effective treatment of ovarian cancer by combinatorial approach.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/administration & dosage , Fever/drug therapy , Magnetite Nanoparticles/administration & dosage , Ovarian Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Carriers/chemistry , Drug Delivery Systems/methods , Female , Ferric Compounds/administration & dosage , Ferric Compounds/chemistry , Humans , Magnetics , Magnetite Nanoparticles/chemistry , Nanomedicine/methods , Particle Size , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...