Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Environ Monit Assess ; 196(6): 565, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773047

ABSTRACT

The aim of this review is to assess the impact of cell phone radiation effects on green plants. Rapid progress in networking and communication systems has introduced frequency- and amplitude-modulated technologies to the world with higher allowed bands and greater speed by using high-powered radio generators, which facilitate high definition connectivity, rapid transfer of larger data files, and quick multiple accesses. These cause frequent exposure of cellular radiation to the biological world from a number of sources. Key factors like a range of frequencies, time durations, power densities, and electric fields were found to have differential impacts on the growth and development of green plants. As far as the effects on green plants are concerned in this review, alterations in their morphological characteristics like overall growth, canopy density, and pigmentation to physiological variations like chlorophyll fluorescence and change in membrane potential etc. have been found to be affected by cellular radiation. On the other hand, elevated oxidative status of the cell, macromolecular damage, and lipid peroxidation have been found frequently. On the chromosomal level, micronuclei formation, spindle detachments, and increased mitotic indexes etc. have been noticed. Transcription factors were found to be overexpressed in many cases due to the cellular radiation impact, which shows effects at the molecular level.


Subject(s)
Cell Phone , Plants/radiation effects , Radio Waves
3.
Chemosphere ; 349: 140649, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37952825

ABSTRACT

The need to minimize eutrophication in water bodies and the shortage of phosphate rock reserves has stimulated the search for sequestration and recovery of phosphate from alternative sources, including wastewater. In this study, aluminium dross (AD), a smelting industry waste/by-product, was converted to high-value material by encapsulation in calcium alginate (Ca-Alg) beads, viz. Ca-Alg-AD and utilized for adsorptive/uptake removal and phosphate recovery from an aqueous environment. Encapsulation of AD in alginate beads solves serious operational difficulties of using raw AD material directly due to density difference constraining efficient contact of AD with pollutants present in water and post-treatment recovery of AD material. The phosphate removal was evaluated in both batch and continuous flow operation modes. The batch adsorption study revealed 96.86% phosphate removal from 10 mg L-1 of initial phosphate concentration in 70 min of optimal contact time. Further, the phosphate removal potential of Ca-Alg-AD beads turned out to be independent of solution pH, with an average of 95.93 ± 1.40 % phosphate removal in the 2-9 pH range. The result reflects phosphate adsorption on Ca-Alg-AD beads following a second-order pseudo-kinetic model. Ca-Alg-AD beads-based adsorption followed Freundlich and Langmuir isotherm models. Further, a continuous packed bed column study revealed a total phosphate adsorption capacity of 1.089 mg g-1. The chemical composition, physical stability, and surface properties of Ca-Alg-AD beads were analyzed by means of state-of-the-art analytical techniques, such as Scanning Electron Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDX), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetry/Differential Thermal Analysis (TG/DTA). These characterization techniques comprehend the mechanism and influence of surface properties and morphology on the phosphate adsorption behaviour, which induce the involvement of multiple mechanisms such as ligand complexation, ion exchange, and electrostatic attraction for phosphate adsorption on Ca-Alg-AD beads.


Subject(s)
Aluminum , Water Pollutants, Chemical , Aluminum/chemistry , Phosphates/chemistry , Feasibility Studies , Water Pollutants, Chemical/analysis , Water , Adsorption , Spectroscopy, Fourier Transform Infrared , Kinetics , Hydrogen-Ion Concentration , Alginates/chemistry
4.
Environ Monit Assess ; 195(6): 703, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37212912

ABSTRACT

The habitation and environment are affected by the stable isotopes of caesium (Cs) and strontium (Sr), as well as by their radioactive isotopes. The current work gives insight on Alstonia scholaris' capacity to phytoextract stable caesium (Cs) and strontium (Sr), as well as the plant's ability to protect against the toxicity of both elements. Experiments with Cs [0-5 mM (CsCl)] and Sr [0-3 mM (SrCl2. 6H2O)] dosing in controlled light, temperature, and humidity condition in greenhouse for 21 days were undertaken. Cs and Sr accumulation in different plant parts was quantified with atomic absorption spectroscopy (AAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) respectively. Hyper-accumulation capacity for Cs and Sr was estimated with indices like transfer factor (TF) and translocation factors (TrF). The uptake pattern of caesium in Alstonia scholaris is 5452.8-24,771.4 mg/kg DW (TF = 85.2-57.6) and in the case of Sr is 1307.4-8705.7 mg/kg DW (TF = 85.3-1.46). The findings demonstrated the plant's ability to transfer Cs and Sr to aboveground biomass on the basis of dry weight, with the majority of the metals being deposited in the shoot rather than the root portion of the plant. For Cs and Sr, with increasing concentration, the plants exhibited the enzymatic expression for defence against metal toxicity by free radicals compared to control. Field emission electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) was employed to assess the spatial distribution of Cs and Sr in plant leaf, indicating the accumulation of Cs, Sr, and their homologous components.


Subject(s)
Alstonia , Strontium , Strontium/toxicity , Alstonia/metabolism , Hydroponics , Environmental Monitoring , Cesium/metabolism , Strontium Radioisotopes
5.
Environ Sci Pollut Res Int ; 30(15): 43860-43871, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36670223

ABSTRACT

Concentrations of heavy metals (Cr, Cu, Fe, Mn, Ni, Pb, and Zn) accumulation were studied in the leaves of two medicinal plant species, namely Holarrhena pubescens and Wrightia tinctoria, from two industrial areas and a control area. Our comparison study revealed that industrialization significantly increased the accumulation of heavy metals in both plant species. A comparison study in control and industrial areas exhibited that heavy metal accumulation was higher in the industrially affected area than in the control area. Heavy metal concentration exceeded the permissible limit recommended by the WHO in both species of two industrial areas. However, both species accumulated the least heavy metal concentration in the control area. Biochemical investigation specifies that in response to heavy metal accumulation, both species increased the activity of hydrogen peroxide (H2O2), malondialdehyde content, the activity of enzymatic (superoxide dismutase and peroxidase) and nonenzymatic (ascorbic acid) antioxidant, but decreased the primary (soluble carbohydrate and total protein), secondary metabolites (phenol and flavonoid) content and free radical scavenging (DPPH) activity. This study indicates that industrialization potentially harms medicinal plants by reducing the efficacy of their medicinal property.


Subject(s)
Metals, Heavy , Plants, Medicinal , Soil Pollutants , Plants, Medicinal/chemistry , Bioaccumulation , Hydrogen Peroxide , Metals, Heavy/analysis , Superoxide Dismutase/metabolism , Environmental Monitoring , Soil Pollutants/analysis
7.
Radiat Environ Biophys ; 61(3): 341-359, 2022 08.
Article in English | MEDLINE | ID: mdl-35869396

ABSTRACT

Radionuclide contamination is a concerning threat due to unexpected nuclear disasters and authorized discharge of radioactive elements, both in the past and in present times. Use of atomic power for energy generation is associated with unresolved issues concerning storage of residues and contaminants. For example, the nuclear accidents in Chernobyl 1986 and Fukushima 2011 resulted in considerable deposition of cesium (Cs) in soil, along with other radionuclides. Among Cs radioactive variants, the anthropogenic radioisotope 137Cs (t½ = 30.16 years) is of serious environmental concern, owing to its rapid incorporation into biological systems and emission of ß and γ radiation during the decaying process. To remediate contaminated areas, mostly conventional techniques are applied that are not eco-friendly. Hence, an alternative green technology, i.e., phytoremediation, should in future be considered and implemented. This sustainable technology generates limited secondary waste and its objectives are to utilize hyper-accumulating plants to extract, stabilize, degrade, and filter the radionuclides. The review highlights plant mechanisms for up-taking radionuclides and influences of different environmental factors involved in the process, while considering its long-term effects.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Biodegradation, Environmental , Cesium Radioisotopes , Japan , Soil Pollutants, Radioactive/analysis
8.
Environ Sci Pollut Res Int ; 29(42): 63357-63368, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35459993

ABSTRACT

Plant species sustaining under a polluted environment for a long time are considered as potentially resistant species. Those plant species can be considered as an eco-sustainable tool used to bio-monitor and mitigate pollution. This study was carried out on a total of ten commonly available plant species to assess their anticipated performance index (API), dust capturing capacity (DCC), and metal accumulation index (MAI) in chromite mine and control areas. According to the anticipated performance index (API), Macaranga peltata (Roxb.) Müll.Arg., Holarrhena pubescens Wall. ex G.Don and Ficus hispida Roxb. ex Wall. are highly tolerant species while Terminalia arjuna (Roxb. ex DC.) Wight & Arn. and Trema orientalis (L.) Blume are intermediate tolerant species. F. hispida was also shown to have the highest dust capturing capacity (5.94 ± 0.43 mg/cm2) whereas that of Woodfordia fruticosa Kurz (1.03 ± 0.11 mg/cm2) was found to be lowest. The metal accumulation index ranged from 17.29 to 4.5 and 6.38 to 1.94 at the mine and control areas, respectively. Two-way ANOVA analysis revealed area-wise significant differences between biochemical and physiological parameters. Also, results showed that the pollution level and heavy metal affected different biochemical and physiological parameters of plant species at the mining area. The plant species with the highest API, DCC, and MAI value could be recommended for greenbelt development in different polluted areas.


Subject(s)
Air Pollutants , Air Pollution , Metals, Heavy , Soil Pollutants , Air Pollutants/analysis , Air Pollution/analysis , Dust/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Plant Leaves/chemistry , Plants , Soil Pollutants/analysis
9.
Chemosphere ; 300: 134512, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398066

ABSTRACT

Poultry litter (PL) utilisation has been widely studied for production of phosphorus (P) rich biochars. Recent research documented co-pyrolysis of PL with nutrient rich chemical additives like rock phosphate, phosphoric acid and magnesium (Mg) salts for production of P-Mg enriched biochar with improved P use efficiency. However, research is highly scarce on utilisation of waste materials for production of PL biochar enriched in P, potassium (K) and sulphur (S). In this context, present work investigated co-pyrolysis (700°C, 10°C/min, 1h residence time) of PL with banana peduncle (BP) and phosphogypsum (PG) in different w/w ratios (1:1:1, 1:2:1, 1:3:1) of BP-PL-PG for production of K-P-S enriched biochars composites. These biochars mainly showed variations in their K-P-S contents. The K (5.1%) and S (11.35%) enrichment was relatively higher in BP-PL-PG (1:1:1) biochar than PL biochar (K-3.70% and S-0.96%). However, P content was higher in PL biochar (4.48%) and was reduced in biochar composites. The P contents were 3.84, 2.84, and 2.44% in BP-PL-PG (1:3:1), BP-PL-PG (1:2:1) and BP-PL-PG (1:1:1) composites respectively. In biochars, P was present predominantly as Ca-Mg bound form. Furthermore, best fit of second order kinetic model indicated slow-release behaviour of P from biochars and composites. These results highlight the scope of co-pyrolysis of PL with selected wastes for production of multi-nutrients enriched biochars with improved nutrient availability for soil application.


Subject(s)
Musa , Pyrolysis , Animals , Calcium Sulfate , Charcoal/chemistry , Nutrients , Phosphorus , Poultry , Soil/chemistry
10.
Folia Microbiol (Praha) ; 67(4): 605-615, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35277802

ABSTRACT

This study evaluates the efficiency of Phosphate solubilizing bacteria isolated from Effluent Treatment Plant sludge of Paradeep Phosphate Limited, Odisha, India, to solubilize rock phosphate (RP) and the mechanism and structural changes during solubilization investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Out of 13 bacterial isolates, Bacillus cereus S0B4, Solibacillus isronensis S0B8, and Bacillus amyloliquefaciens S0B17 strains were found to be the best RP solubilizers. This is the first report on S. isronensis S0B8 with the ability to solubilize RP. In particular, the potent strain B. cereus S0B4 showed maximum soluble P (338.5 mg/L) on the 7th day. Negative correlations (r = -0.70; p ≤ 0.01) were observed between soluble P concentration and pH, whereas positive correlation exists with the growth of B. cereus S0B4 (r = 0.91, p ≤ 0.01), S. isronensis S0B8 (r = 0.75, p ≤ 0.01), and B. amyloliquefaciens S0B17 (r = 0.77, p ≤ 0.01) respectively. The P release kinetics followed the 1st order model well (R2 = 0.8001-0.8503). It seems that H+ ions and organic anions released from the organic acids are major factors responsible for RP solubilization. The SEM observations demonstrate that B. cereus S0B4 corroded the RP surface significantly due to the proton attack. The XRD analysis confirms that the intensity of all mineral peaks decreases after treatment with B. cereus S0B4. The FTIR analysis indicated a significant decrease of calcite and fluorapatite's vibrational bands with the disappearance of quartz.


Subject(s)
Fertilizers , Phosphates , Bacteria , India , Phosphates/chemistry , Sewage , Soil Microbiology
11.
Environ Sci Pollut Res Int ; 26(29): 29620-29638, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31463756

ABSTRACT

Mosses were proved as an ideal and reliable biomonitor as well as an indicator of atmospheric trace metal pollution. They are used as model indicator species of air pollution since long back due to their simple structure, genetic diversity, totipotency, rapid colony-forming ability, and high metal resistance behavior. Bryomonitoring technique is gradually being popularized as an economically viable procedure for estimating the degrees of environmental health and evaluating the toxic pollutants in biosphere. Thus, in the present scenario, many parts of the world use these organisms for monitoring the air pollution. This article describes an overview of the relationship of terrestrial mosses with trace metals with respect to their uptake, accumulation, and toxification as well as detoxification and tolerance mechanisms. The review article explicitly expresses the caliber of the cryptogamic mosses in establishing the pristine environment around the world. It also highlights the underpinning mechanisms and potential for future research directions. We have referred more than 250 articles, which deals with the assessment and impact of different heavy metals on 52 numbers of different moss species belongs to different climatic zones. The present review covers the research work in this area carried out worldwide since 1965.


Subject(s)
Air Pollutants/analysis , Bryophyta/drug effects , Bryophyta/physiology , Environmental Monitoring/methods , Metals, Heavy/analysis , Air Pollutants/metabolism , Air Pollutants/toxicity , Air Pollution , Bryophyta/chemistry , Bryopsida/chemistry , Metals, Heavy/metabolism , Metals, Heavy/toxicity
12.
J Food Sci Technol ; 55(11): 4681-4686, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30333665

ABSTRACT

Wild yam (Dioscorea spp.) tubers, an indigenous food makes a significant contribution to the diets of tribal people of Koraput, India. However, there is dearth of documented information of their mineral bioavailability and heavy metal content. To know their quality and safety concerns about their use, minerals and heavy metal concentrations were evaluated in eight wild and one cultivated yam species from Koraput. The samples were further investigated for their antinutrients to determine bioavailability of minerals. The majority of the wild yam tubers were rich in some of the essential minerals like calcium (18.08-74.79 mg/100 g), iron (11.15-28.61 mg/100 g), zinc (2.11-6.21 mg/100 g) and phosphorous (179-248 mg/100 g). The heavy metals concentration (mg/100 g) ranged from: cobalt (1.06-1.98), nickel (0.30-0.89), chromium (2.10-4.53) and lead (0.11-0.93) among the studied yam species. These values were lower than the recommended tolerable levels proposed by WHO Expert Committee on Food Additives. Based on these results of molar ratio between phytate and Fe, Zn and Ca were below the suggested critical values indicating the bioavailability of Fe, Zn and Ca to be high. The study also suggests these wild yam species as the safe food sources for mass consumption and can be beneficial for health.

13.
Rev Environ Contam Toxicol ; 206: 29-47, 2010.
Article in English | MEDLINE | ID: mdl-20652667

ABSTRACT

Large quantities of iron-ore tailings are being generated annually in the world from mining and processing of iron ores. It has been estimated that around 10-15% of the iron ore mined in India has remained unutilized and discarded as slimes during mining and subsequent processing. Soil contamination resulting from mining activities affects surrounding flora and fauna and presents a large clean-up challenge to the mining industry. Innovative new methodologies have been proposed and among the most promising are those that rely on new phytoremediation technology. In this paper we address and review the status of phytoremediation as a technology to reduce and control contaminated mine wastes. Several different approaches and different plant species are used to remove environmentally toxic metals from mine waste sites. Such approaches have the objective of restoring mining waste sites to human and animal use, or at least, to curtail or eliminate the off-site movement of toxic entities that potentially could reach humans. How well phytoremediation performs as an alternative soil restoration technology depends on several factors, including the composition of soil, toxicity level of the contaminant, degree to which plant species fit natural local growth patterns and type of concentration of metal/contaminant in such plants. Phytoremediation has opened prospects for less costly, yet practicable approaches to clean-up contaminated waste sites, particularly those associated with mineral extraction mining. We discuss several plant species that are capable of phytoextracting and/or phytostabilizing harmful elements from contaminated soil and water; such processes are prospectively effective for addressing waste problems that derive from mining and processing activities, as well as those that derive from mitigating the threat posed by waste that surrounds mining sites. Unfortunately, phytoremediation is still in the embryonic stage, and more research is needed to find the plant species that will be most effective for addressing different mining waste scenarios. Such plants must be able to survive and even thrive in heavily contaminated soil and be able to mitigate the pollutants that exist in the soil in which these plants will grow.


Subject(s)
Biodegradation, Environmental , Environmental Pollutants , Industrial Waste , Iron , Mining
SELECTION OF CITATIONS
SEARCH DETAIL
...