Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37831258

ABSTRACT

The study aimed to develop an effective and eco-friendly enzymatic process to extract carotenoproteins from shrimp waste. The optimization of enzymatic hydrolysis conditions to maximize the degree of deproteinization (DDP) of carotenoprotein from shrimp head waste (SHW) and shrimp shell waste (SSW) was conducted separately using the Box-Behnken design of response surface methodology (RSM). To achieve a maximum DDP of 92.32% for SSW and 96.72% for SHW, the optimal hydrolysis conditions were determined as follows: temperature (SSW: 53.13 °C; SHW: 45.90 °C), pH (SSW: 7.13; SHW: 6.78), time (SSW: 90 min; SHW: 61.18 min), and enzyme/substrate ratio (SSW: 2 g/100 g; SHW: 1.18 g/100 g). The carotenoprotein effluent obtained was subjected to spray drying and subsequently assessed for color, nutritional, and functional characteristics. The carotenoprotein from shrimp shell (CpSS) contained a higher essential amino acid score than carotenoprotein from shrimp head (CpSH). CpSS had a higher whiteness index of 82.05, while CpSH had 64.04. Both CpSS and CpSH showed good functional properties viz solubility, emulsion, and foaming properties. The maximum solubility of CpSH and CpSS was determined to be 92.94% and 96.48% at pH 10.0, respectively. The highest emulsion capacity (CpSH: 81.33%, CpSS: 70.13%) and stability (CpSH: 57.06%, CpSS: 63.05%) were observed at 3% carotenoprotein concentration. Similarly, the highest values of foaming capacity (CpSH: 27.66%, CpSS: 105.5%) and stability (CpSH: 23.83%, CpSS: 105.33%) were also found at the same 3% carotenoprotein concentration. In conclusion, the carotenoproteins obtained from shrimp waste showed favorable attributes in terms of color, amino acid composition, and functional properties. These findings strongly suggest the potential applicability of CpSS and CpSH as valuable resources in various domains. CpSS, with its higher whiteness index, greater amino acid content, and superior functional characteristics, may find suitability as functional ingredients in human food products. Conversely, CpSH could be considered for incorporation into animal feed formulations.

2.
Carbohydr Polym ; 253: 117203, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33278974

ABSTRACT

Acetes shrimp is an unexploited tiny shrimp mainly landed as bycatch which is a good source for the recovery of protein and chitin. In the present study, the residual shell obtained after the hydrolysis of Acetes was used for the extraction of chitin by combining enzymatic and chemical treatments. Enzymatic hydrolysis with Alcalase was performed at different rates. Results showed that the protein removal efficiency increases with the increase in DH and the maximum deproteinzation was achieved at 30 % DH (93.68 %). The FTIR spectra showed two sharp bands for chemically prepared chitin and 30 % DH chitin at 1627-1629 and 1664-1665 cm-1 indicating that its alpha amorphous structure. The degree of N-acetylation was found to be higher in enzymatically prepared chitin in all different hydrolytic treatment rather than chemically prepared. The surface morphologies of chitin revealed the porous and nanofibrous structures for 30 % DH chitin and chemically prepared chitin.


Subject(s)
Animal Shells/chemistry , Chitin/chemistry , Chitin/isolation & purification , Decapoda/chemistry , Acetylation , Animals , Fish Proteins/chemistry , Hydrolysis , Nanofibers/chemistry , Peptide Hydrolases/chemistry , Porosity , Shellfish , Spectroscopy, Fourier Transform Infrared
3.
J Sci Food Agric ; 100(1): 50-58, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31435937

ABSTRACT

BACKGROUND: Protein hydrolysate powder was prepared from non-penaeid shrimp (Acetes indicus) by enzymatic hydrolysis using Alcalase enzyme. Extraction conditions such as pH (6.5, 7.5 and 8.5), enzyme to substrate ratio (1.0, 1.5 and 2.0) and temperature (40, 50 and 60 °C) were optimized against the degree of hydrolysis using response surface methodology. RESULTS: Protein hydrolysate comprised of 740 g kg-1 protein, 150 g kg-1 ash and 90 g kg-1 fat contents. The amino acid score showed superior attributes with 56% essential amino acids. Furthermore, the functional properties of spray-dried protein hydrolysates were evaluated. Protein solubility was found to be the 90.20% at pH 2 and 96.92% at pH 12. Emulsifying properties were found to vary with the concentration of protein hydrolysates and the highest emulsifying capacity (26.67%) and emulsion stability (23.33%) were found at a concentration of 20 mg mL-1 . The highest and the lowest foaming capacity were observed at pH 6 and pH 10 with a concentration of 20 mg mL-1 . The water holding capacity of protein hydrolysate was found to increase with concentration, with a value of 5.4 mL g-1 at a concentration of 20 mg mL-1 . CONCLUSION: The results of the present study indicate that the use of A. indicus for the production of protein hydrolysate has good functional properties and nutritional value, rendering it suitable for broad industrial food applications. © 2019 Society of Chemical Industry.


Subject(s)
Crustacea/chemistry , Shellfish Proteins/chemistry , Amino Acids/analysis , Animals , Biocatalysis , Emulsions/chemistry , Food Handling , Hydrolysis , Nutritive Value , Protein Hydrolysates/chemistry , Solubility , Subtilisins/chemistry
4.
J Sci Food Agric ; 98(6): 2393-2401, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29023810

ABSTRACT

BACKGROUND: Functional extruded snacks were prepared using paste shrimp powder (Acetes spp.), which is rich in protein. The process variables required for the preparation of extruded snacks was optimized using response surface methodology. Extrusion temperature (130-144 °C), level of Acetes powder (100-200 g kg-1 ) and feed moisture (140-200 g kg-1 ) were selected as design variables, and expansion ratio, porosity, hardness, crispness and thiobarbituric acid reactive substance value were taken as the response variables. RESULTS: Extrusion temperature significantly influenced all the response variables, while Acetes inclusion influenced all variables except porosity. Feed moisture content showed a significant quadratic effect on all responses and an interactive effect on expansion ratio and hardness. Shrimp powder incorporation increased the protein and mineral content of the final product. The extruded snack made with the combination of extrusion temperature 144.59 °C, feed moisture 178.5 g kg-1 and Acetes inclusion level 146.7 g kg-1 was found to be the best one based on sensory evaluation. CONCLUSION: The study suggests that use of Acetes species for the development of extruded snacks will serve as a means of utilization of Acetes as well as being a rich source of proteins for human consumption, which would otherwise remain unexploited as a by-catch. © 2017 Society of Chemical Industry.


Subject(s)
Pandalidae/chemistry , Snacks , Animals , Food Additives/chemistry , Food Handling , Hardness , Nutritive Value , Powders/chemistry , Quality Control , Temperature
5.
Environ Sci Pollut Res Int ; 24(26): 21222-21232, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28735471

ABSTRACT

Protein hydrolysate was prepared from Acetes indicus which is a major bycatch among non-penaeid prawn landings of India. Hydrolysis conditions (enzyme to substrate ratio and time) for preparing protein hydrolysates using alcalase enzyme were optimized by response surface methodology using central composite design. The optimum conditions for enzyme-substrate ratio (mL/100 g) of 1.57, 1.69, 1.60, 1.56, and 1.50 and for hydrolysis time of 97.18, 96.5, 98.15 min, 102.48, and 88.44 min were established for attaining maximum yield, degree of hydrolysis, 2,2-diphenyl-1-picrylhydrazyl, angiotensin I-converting enzyme-inhibiting activity, and metal-chelating activity, respectively. ABTS radical scavenging activity and reducing power assay of optimized protein hydrolysate were found to be increased with the increase in concentration. The higher value of 7.04 (µM Trolox/g), 87.95, and 77.24%, respectively for DPPH, ACE, and metal-chelating activity indicated that the A. indicus protein hydrolysates have beneficial biological properties that could be well-utilized in the application of functional foods and nutraceuticals. Graphical abstract ᅟ.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/chemistry , Decapoda/chemistry , Protein Hydrolysates/chemistry , Animals , Antioxidants/pharmacology , Biphenyl Compounds , Decapoda/metabolism , Hydrolysis , India
SELECTION OF CITATIONS
SEARCH DETAIL
...