Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Health Care Poor Underserved ; 33(4S): 173-179, 2022.
Article in English | MEDLINE | ID: mdl-36533465

ABSTRACT

Lung cancer screening is underused nationwide, particularly in rural areas where incidence and mortality rates are high, suggesting the need for innovative methods to reach underserved populations. Partners from national, state, and community positions can combine the service and science needed to save lives with mobile lung cancer screening.


Subject(s)
Lung Neoplasms , Humans , West Virginia/epidemiology , Lung Neoplasms/epidemiology , Early Detection of Cancer , Medically Underserved Area , Incidence
2.
PLoS One ; 14(9): e0222315, 2019.
Article in English | MEDLINE | ID: mdl-31504074

ABSTRACT

OBJECTIVES: To evaluate the diagnostic performance and image quality of an iterative model-based reconstruction (IMR) using a 100-kVp protocol for the assessment of heavily calcified coronary vessels, compared to those of filtered back projection (FBP) and hybrid iterative technique (iDose4), and also compared to those of IMR with standard 120 kVp protocol. METHODS: Among patients with Agatston scores ≥ 400 who had undergone both coronary CT angiography (CCTA) and invasive coronary angiography (ICA), age- and sex-matched patients with body mass index < 30 were retrospectively enrolled from CCTA with low-kVp protocol (100 kVp, n = 30) and with standard-kVp protocol (120 kVp, n = 30). Image data were all reconstructed with FBP, iDose4, and IMR. In each dataset, the objective and subjective image quality, and diagnostic accuracy (> 50% in luminal reduction as compared with ICA) were assessed. RESULTS: IMR showed better objective and subjective image quality than FBP and iDose4 in both 100 kVp and 120 kVp groups (all p < 0.05). IMR showed a significantly improved all diagnostic performance compared with FBP (p < 0.05). Compared with iDose4, IMR significantly improved positive predictive value (85.0% vs. 80.5%; p < 0.05). There was no significant difference in image quality and diagnostic performance using IMR between the 100 kVp and 120 kVp groups. CONCLUSIONS: 100 kVp IMR may be useful for the assessment of heavily calcified coronary vessels, providing better diagnostic performance than FBP or iDose4 at the same dose, while maintaining similar diagnostic accuracy to 120 kVp IMR.


Subject(s)
Computed Tomography Angiography/instrumentation , Coronary Angiography/instrumentation , Coronary Vessels/diagnostic imaging , Vascular Calcification/diagnostic imaging , Aged , Algorithms , Computed Tomography Angiography/methods , Computed Tomography Angiography/standards , Coronary Angiography/methods , Coronary Angiography/standards , Coronary Vessels/physiology , Female , Humans , Male , Middle Aged , Vascular Calcification/pathology
3.
Med Phys ; 46(4): 1648-1662, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30689216

ABSTRACT

PURPOSE: Computed tomography myocardial perfusion imaging (CT-MPI) and coronary CTA have the potential to make CT an ideal noninvasive imaging gatekeeper exam for invasive coronary angiography. However, beam hardening (BH) artifacts prevent accurate blood flow calculation in CT-MPI. BH correction methods require either energy-sensitive CT, not widely available, or typically, a calibration-based method in conventional CT. We propose a calibration-free, automatic BH correction (ABHC) method suitable for CT-MPI and evaluate its ability to reduce BH artifacts in single "static-perfusion" images and to create accurate myocardial blood flow (MBF) in dynamic CT-MPI. METHODS: In the algorithm, we used input CT DICOM images and iteratively optimized parameters in a polynomial BH correction until a BH-sensitive cost function was minimized on output images. An input image was segmented into a soft tissue image and a highly attenuating material (HAM) image containing bones and regions of high iodine concentrations, using mean HU and temporal enhancement properties. We forward projected HAM, corrected projection values according to a polynomial correction, and reconstructed a correction image to obtain the current iteration's BH corrected image. The cost function was sensitive to BH streak artifacts and cupping. We evaluated the algorithm on simulated CT and physical phantom images, and on preclinical porcine with optional coronary obstruction and clinical CT-MPI data. Assessments included measures of BH artifact in single images as well as MBF estimates. We obtained CT images on a prototype spectral detector CT (SDCT, Philips Healthcare) scanner that provided both conventional and virtual keV images, allowing us to quantitatively compare corrected CT images to virtual keV images. To stress test the method, we evaluated results on images from a different scanner (iCT, Philips Healthcare) and different kVp values. RESULTS: In a CT-simulated digital phantom consisting of water with iodine cylinder insets, BH streak artifacts between simulated iodine inserts were reduced from 13 ± 2 to 0 ± 1 HU. In a similar physical phantom having higher iodine concentrations, BH streak artifacts were reduced from 48 ± 6 to 1 ± 5 HU and cupping was reduced by 86%, from 248 to 23 HU. In preclinical CT-MPI images without coronary obstruction, BH artifact was reduced from 24 ± 6 HU to less than 5 ± 4 HU at peak enhancement. Standard deviation across different regions of interest (ROI) along the myocardium was reduced from 13.26 to 6.86 HU for ABHC, comparing favorably to measurements in the corresponding virtual keV image. Corrections greatly reduced variations in preclinical MBF maps as obtained in normal animals without obstruction (FFR = 1). Coefficients of variations were 22% (conventional CT), 9% (ABHC), and 5% (virtual keV). Moreover, variations in flow tended to be localized after ABHC, giving result which would not be confused with a flow deficit in a coronary vessel territory. CONCLUSION: The automated algorithm can be used to reduce BH artifact in conventional CT and improve CT-MPI accuracy particularly by removing regions of reduced estimated flow which might be misinterpreted as flow deficits.


Subject(s)
Algorithms , Coronary Occlusion/diagnostic imaging , Myocardial Perfusion Imaging/methods , Phantoms, Imaging , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Animals , Calibration , Female , Myocardial Perfusion Imaging/instrumentation , Swine , Tomography, X-Ray Computed/instrumentation
4.
Clin Imaging ; 52: 292-301, 2018.
Article in English | MEDLINE | ID: mdl-30212800

ABSTRACT

OBJECTIVES: To evaluate the ability of the retrospectively generated virtual monoenergetic images (VMIs) from a dual-layer detector-based spectral computed tomography (SDCT) to augment aortic enhancement for the evaluation of aortic anatomy and pathology. METHODS: 98 patients with suboptimal aortic enhancement (≤200 HU) were retrospectively identified from SDCT scans. VMI from 40 to 80 keV were generated. Attenuation, noise, SNR, and CNR were measured at seven levels in the aorta. Image quality was graded on a 5-point scale, 5 being the best. From the VMI, an ideal set was chosen with mean vascular attenuation above 200 HU while maintaining diagnostic quality. Image parameters and quality of this ideal-set were compared to the standard 120-kVp images. RESULTS: The mean attenuation of all seven measured anatomical regions was 156.6 ±â€¯61.7 HU in the 120-kVp images. Attenuation of the VMI from 40 to 70 keV were higher than the 120-kVp image, measuring 439.2 ±â€¯215.3 HU, 298.5 ±â€¯140.6 HU, 213.4 ±â€¯94.3 HU, and 164.7 ±â€¯90.2 HU, for 40 keV, 50 keV, 60 keV, and 70 keV, respectively (p value <0.01 for 40, 50, 60 keV; 0.07 for 70 keV). SNR and CNR showed similar trends. The 50 keV VMI had the best image quality (4.48 ±â€¯0.84 vs. 2.24 ±â€¯0.92 on 120-kVp images, p < 0.001). Attenuation, CNR, and SNR increased by 90.6%, 85.0%, and 108.1% at 50 keV compared to 120-kVp. CONCLUSIONS: A contrast-enhanced CT study can be optimized for the assessment of the aorta by using low-energy VMI obtained using SDCT. At the optimal monoenergetic level, attenuation, SNR, CNR and image quality were significantly higher than that of conventional polyenergetic images.


Subject(s)
Aorta, Abdominal/diagnostic imaging , Aorta, Thoracic/diagnostic imaging , Aortic Diseases/diagnosis , Computed Tomography Angiography/methods , Image Processing, Computer-Assisted/methods , Virtual Reality , Female , Humans , Male , Middle Aged , Retrospective Studies
5.
Phys Med Biol ; 63(18): 185011, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30113311

ABSTRACT

In this work, we clarified the role of acquisition parameters and quantification methods in myocardial blood flow (MBF) estimability for myocardial perfusion imaging using CT (MPI-CT). We used a physiologic model with a CT simulator to generate time-attenuation curves across a range of imaging conditions, i.e. tube current-time product, imaging duration, and temporal sampling, and physiologic conditions, i.e. MBF and arterial input function width. We assessed MBF estimability by precision (interquartile range of MBF estimates) and bias (difference between median MBF estimate and reference MBF) for multiple quantification methods. Methods included: six existing model-based deconvolution models, such as the plug-flow tissue uptake model (PTU), Fermi function model, and single-compartment model (SCM); two proposed robust physiologic models (RPM1, RPM2); model-independent singular value decomposition with Tikhonov regularization determined by the L-curve criterion (LSVD); and maximum upslope (MUP). Simulations show that MBF estimability is most affected by changes in imaging duration for model-based methods and by changes in tube current-time product and sampling interval for model-independent methods. Models with three parameters, i.e. RPM1, RPM2, and SCM, gave least biased and most precise MBF estimates. The average relative bias (precision) for RPM1, RPM2, and SCM was ⩽11% (⩽10%) and the models produced high-quality MBF maps in CT simulated phantom data as well as in a porcine model of coronary artery stenosis. In terms of precision, the methods ranked best-to-worst are: RPM1 > RPM2 > Fermi > SCM > LSVD > MUP [Formula: see text] other methods. In terms of bias, the models ranked best-to-worst are: SCM > RPM2 > RPM1 > PTU > LSVD [Formula: see text] other methods. Models with four or more parameters, particularly five-parameter models, had very poor precision (as much as 310% uncertainty) and/or significant bias (as much as 493%) and were sensitive to parameter initialization, thus suggesting the presence of multiple local minima. For improved estimates of MBF from MPI-CT, it is recommended to use reduced models that incorporate prior knowledge of physiology and contrast agent uptake, such as the proposed RPM1 and RPM2 models.


Subject(s)
Algorithms , Coronary Circulation , Coronary Vessels/physiology , Myocardial Perfusion Imaging/methods , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Animals , Swine
6.
J Comput Assist Tomogr ; 42(6): 858-865, 2018.
Article in English | MEDLINE | ID: mdl-29659426

ABSTRACT

OBJECTIVE: To evaluate the ability of retrospectively generated virtual monoenergetic images (VMIs) from the detector-based spectral computed tomography (SDCT) to augment pulmonary artery enhancement in CT and if iodine map can predict the optimal monoenergetic level. METHODS: The study included 79 patients with contrast-enhanced chest CT scans on an SDCT scanner. Conventional 120-kVp images and VMI from 40 to 80 keV were generated. Attenuation, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at 7 different locations in the pulmonary arterial system. The iodine concentration (in milligrams per milliliter) was calculated using the iodine-density images. The overall image quality was subjectively graded on a 5-point scale, with 1 being the worst and 5 the best. Fifty-four patients with suboptimal pulmonary enhancement (<200 Hounsfield units [HU]) were then identified. From the VMIs, an ideal set was chosen that maintained mean vascular attenuation greater than 200 HU while maintaining at least diagnostically acceptable quality (ie, IQ score ≥3). At this ideal energy level, quantitative and qualitative parameters were compared with the standard 120-kVp polyenergetic study. Average iodine concentrations were correlated with the optimal keV levels used for salvaging suboptimal studies. RESULTS: The mean attenuation of all the measured pulmonary arterial regions in the suboptimal cases was 136.1 ± 18.1 HU in conventional 120-kVp images. Attenuations of the VMIs at 40, 50, and 60 keV were significantly higher than conventional images measuring 357.5 ± 19.5, 243.6 ± 16.7, and 176.6 ± 15.0 HU, respectively (P < 0.001). Similar results were seen with SNR and CNR. In total, 50 studies can be salvaged, with 50 keV being the optimal energy for 21, 60 keV optimal for 17, and 40 keV optimal for 12 studies. At the optimal energy level, there were improvements of attenuation, SNR, and CNR by 71%, 63%, and 137% compared with conventional images. There was a positive correlation between iodine value and optimal reconstruction energy with a linear equation y = 5.9539x + 27.434 and R = 0.8093. CONCLUSIONS: Suboptimal enhanced pulmonary arterial CT studies can be salvaged using low-energy VMI generated from the SDCT scanner. There were significant improvements of attenuation, SNR, and CNR at the optimal monoenergetic level.


Subject(s)
Pulmonary Circulation , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Algorithms , Computed Tomography Angiography/methods , Contrast Media , Female , Humans , Iohexol/analogs & derivatives , Iopamidol , Male , Middle Aged , Retrospective Studies , Signal-To-Noise Ratio
7.
Phys Med Biol ; 63(2): 025027, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29185436

ABSTRACT

This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital's clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.


Subject(s)
Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Humans , Iodine , Signal-To-Noise Ratio
8.
Eur J Radiol ; 98: 118-125, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29279149

ABSTRACT

AIM: To evaluate the noise characteristics of virtual monoenergetic images (VMI) obtained from a recently introduced dual-layer detector-based spectral CT (SDCT), both in a phantom and patients. MATERIALS AND METHODS: A cylindrical Catphan® 600 phantom (The Phantom Library, Salem NY, USA) was scanned using the SDCT. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured in VMI from 40 to 200keV as well as conventional 120 kVp images. One hundred consecutive patients who had an abdominal CT on the SDCT were then recruited in the study. Noise, SNR and CNR were measured in the liver, pancreas, spleen, kidney, abdominal aorta, portal vein, muscle, bone, and fat, both in VMI (40-200 keV) and conventional 120kVp images. Qualitative image analysis was performed by an independent reader for vascular enhancement and image quality on a 5 point scale (1-worst, 5-best). RESULTS: On phantom studies, noise was low at all energies of VMI. Noise was highest at 40keV (5.3±0.2 HU), gradually decreased up to 70keV (3.6±0.2 HU), after which it remained constant up to 200keV (3.5±0.2 HU). In the patient cohort, noise was low (<25 HU) at all the energy levels of VMI for all the regions, with the exception of bone. For example, noise in the liver was highest at 40keV (13.2±4.6 HU), steadily decreased up to 70keV (12.0±4.4 HU) and then remained constantly low up to 200keV (11.6±4.3HU). For liver, pancreas, portal vein, aorta, muscle and fat, noise at all levels of VMI was lower than of conventional images (p<0.01). For all organs, SNR, and CNR were highest at 40keV (6.8-34.9; 18.3-44.9, respectively) after which they gradually decreased up to 120keV (3.4-6.5; 9.5-13.0) and then remained constant to 200keV (2.6-5.5; 8.5-12.5). Qualitative scores of VMI up to 70keV were significantly higher than the conventional images (p≤0.01), whereas for VMI≥80keV, they were lower than conventional images (p<0.001). CONCLUSION: VMI obtained from the novel SDCT scanner have low noise across the entire spectrum of energies. There are significant SNR and CNR improvements compared to conventional 120 kVp images.


Subject(s)
Imaging, Three-Dimensional/methods , Liver Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Adult , Aged , Female , Humans , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Signal-To-Noise Ratio , Tomography Scanners, X-Ray Computed
9.
Eur Radiol ; 28(5): 1826-1834, 2018 May.
Article in English | MEDLINE | ID: mdl-29218613

ABSTRACT

OBJECTIVES: To systematically explore the lowest reasonably achievable radiation dose for appendiceal CT using an iterative reconstruction (IR) in young adults. METHODS: We prospectively included 30 patients who underwent 2.0-mSv CT for suspected appendicitis. From the helical projection data, 1.5-, 1.0- and 0.5-mSv CTs were generated using a low-dose simulation tool and the knowledge-based IR. We performed step-wise non-inferiority tests sequentially comparing 2.0-mSv CT with each of 1.5-, 1.0- and 0.5-mSv CT, with a predetermined non-inferiority margin of 0.06. The primary end point was the pooled area under the receiver-operating-characteristic curve (AUC) for three abdominal and three non-abdominal radiologists. RESULTS: For the abdominal radiologists, the non-inferiorities of 1.5-, 1.0- and 0.5-mSv CT to 2.0-mSv CT were sequentially accepted [pooled AUC difference: 2.0 vs. 0.5 mSv, 0.017 (95% CI: -0.016, 0.050)]. For the non-abdominal radiologists, the non-inferiorities of 1.5- and 1.0-mSv CT were accepted; however, the non-inferiority of 0.5-mSv CT could not be proved [pooled AUC difference: 2.0 vs. 1.0 mSv, -0.017 (-0.070, 0.035) and 2.0 vs. 0.5 mSv, 0.045 (-0.071, 0.161)]. CONCLUSION: The 1.0-mSv appendiceal CT was non-inferior to 2.0-mSv CT in terms of diagnostic performance for both abdominal and non-abdominal radiologists; 0.5-mSv appendiceal CT was non-inferior only for abdominal radiologists. KEY POINTS: • For both abdominal and non-abdominal radiologists, 1.0-mSv appendiceal CT could be feasible. • The 0.5-mSv CT was non-inferior to 2.0-mSv CT only for expert abdominal radiologists. • Reader experience is an important factor affecting diagnostic impairment by low-dose CT.


Subject(s)
Appendicitis/diagnosis , Appendix/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Adolescent , Adult , Female , Humans , Male , ROC Curve , Radiation Dosage , Young Adult
10.
Insights Imaging ; 8(6): 589-598, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28986761

ABSTRACT

Detector-based spectral computed tomography is a novel dual-energy CT technology that employs two layers of detectors to simultaneously collect low- and high-energy data in all patients using standard CT protocols. In addition to the conventional polyenergetic images created for each patient, projection-space decomposition is used to generate spectral basis images (photoelectric and Compton scatter) for creating multiple spectral images, including material decomposition (iodine-only, virtual non-contrast, effective atomic number) and virtual monoenergetic images, on-demand according to clinical need. These images are useful in multiple clinical applications, including- improving vascular contrast, improving lesion conspicuity, decreasing artefacts, material characterisation and reducing radiation dose. In this article, we discuss the principles of this novel technology and also illustrate the common clinical applications. Teaching points • The top and bottom layers of dual-layer CT absorb low- and high-energy photons, respectively.• Multiple spectral images are generated by projection-space decomposition.• Spectral images can be generated in all patients scanned in this scanner.

11.
Abdom Radiol (NY) ; 42(11): 2752-2759, 2017 11.
Article in English | MEDLINE | ID: mdl-28493070

ABSTRACT

PURPOSE: To evaluate the image quality of routine diagnostic images generated from a novel detector-based spectral detector CT (SDCT) and compare it with CT images obtained from a conventional scanner with an energy-integrating detector (Brilliance iCT), Routine diagnostic (conventional/polyenergetic) images are non-material-specific images that resemble single-energy images obtained at the same radiation, METHODS: ACR guideline-based phantom evaluations were performed on both SDCT and iCT for CT adult body protocol. Retrospective analysis was performed on 50 abdominal CT scans from each scanner. Identical ROIs were placed at multiple locations in the abdomen and attenuation, noise, SNR, and CNR were measured. Subjective image quality analysis on a 5-point Likert scale was performed by 2 readers for enhancement, noise, and image quality. RESULTS: On phantom studies, SDCT images met the ACR requirements for CT number and deviation, CNR and effective radiation dose. In patients, the qualitative scores were significantly higher for the SDCT than the iCT, including enhancement (4.79 ± 0.38 vs. 4.60 ± 0.51, p = 0.005), noise (4.63 ± 0.42 vs. 4.29 ± 0.50, p = 0.000), and quality (4.85 ± 0.32, vs. 4.57 ± 0.50, p = 0.000). The SNR was higher in SDCT than iCT for liver (7.4 ± 4.2 vs. 7.2 ± 5.3, p = 0.662), spleen (8.6 ± 4.1 vs. 7.4 ± 3.5, p = 0.152), kidney (11.1 ± 6.3 vs. 8.7 ± 5.0, p = 0.033), pancreas (6.90 ± 3.45 vs 6.11 ± 2.64, p = 0.303), aorta (14.2 ± 6.2 vs. 11.0 ± 4.9, p = 0.007), but was slightly lower in lumbar-vertebra (7.7 ± 4.2 vs. 7.8 ± 4.5, p = 0.937). The CNR of the SDCT was also higher than iCT for all abdominal organs. CONCLUSION: Image quality of routine diagnostic images from the SDCT is comparable to images of a conventional CT scanner with energy-integrating detectors, making it suitable for diagnostic purposes.


Subject(s)
Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Radiography, Abdominal/instrumentation , Retrospective Studies , Signal-To-Noise Ratio , Tomography, X-Ray Computed/instrumentation
12.
Int J Cardiovasc Imaging ; 33(10): 1609-1618, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28409258

ABSTRACT

We evaluated the image quality and diagnostic performance of late iodine enhancement computed tomography (LIE-CT) with knowledge-based iterative model reconstruction (IMR) for the detection of myocardial infarction (MI) in comparison with late gadolinium enhancement magnetic resonance imaging (LGE-MRI). The study investigated 35 patients who underwent a comprehensive cardiac CT protocol and LGE-MRI for the assessment of coronary artery disease. The CT protocol consisted of stress dynamic myocardial CT perfusion, coronary CT angiography (CTA) and LIE-CT using 256-slice CT. LIE-CT scans were acquired 5 min after CTA without additional contrast medium and reconstructed with filtered back projection (FBP), a hybrid iterative reconstruction (HIR), and IMR. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed. Sensitivity and specificity of LIE-CT for detecting MI were assessed according to the 16-segment model. Image quality scores, and diagnostic performance were compared among LIE-CT with FBP, HIR and IMR. Among the 35 patients, 139 of 560 segments showed MI in LGE-MRI. On LIE-CT with FBP, HIR, and IMR, the median SNRs were 2.1, 2.9, and 6.1; and the median CNRs were 1.7, 2.2, and 4.7, respectively. Sensitivity and specificity were 56 and 93% for FBP, 62 and 91% for HIR, and 80 and 91% for IMR. LIE-CT with IMR showed the highest image quality and sensitivity (p < 0.05). The use of IMR enables significant improvement of image quality and diagnostic performance of LIE-CT for detecting MI in comparison with FBP and HIR.


Subject(s)
Computed Tomography Angiography/methods , Contrast Media/administration & dosage , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Gadolinium DTPA/administration & dosage , Iopamidol/administration & dosage , Knowledge Bases , Magnetic Resonance Imaging, Cine/methods , Multidetector Computed Tomography/methods , Myocardial Infarction/diagnostic imaging , Myocardial Perfusion Imaging/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Aged , Cardiac-Gated Imaging Techniques , Coronary Artery Disease/physiopathology , Coronary Circulation , Electrocardiography , Female , Humans , Male , Middle Aged , Myocardial Infarction/physiopathology , Myocardium/pathology , Observer Variation , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies
13.
Abdom Radiol (NY) ; 42(10): 2579-2586, 2017 10.
Article in English | MEDLINE | ID: mdl-28421243

ABSTRACT

PURPOSE: To evaluate the image quality of 70-keV virtual monoenergetic (monoE) abdominal CT images compared to 120-kVp polychromatic images generated from a spectral detector CT (SDCT) scanner. METHODS: This prospective study included generation of a 120-kVp polychromatic dataset and a 70-keV virtual monoE dataset after a single contrast-enhanced CT acquisition on a SDCT scanner (Philips Healthcare) during portal venous phase. The attenuation values (HU), noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured in the liver, spleen, pancreas, kidney, aorta, portal vein, and muscle. The subjective image quality including noise, soft tissue contrast, sharpness, and overall image quality were graded on a 5-point Likert scale by two radiologists independently (1-worst image quality, 5-best image quality). Statistical analysis was performed using paired sample t test and Fleiss's Kappa. RESULTS: Fifty-five patients (54.3 ± 16.8 y/o; 28 M, 27 F) were recruited. The noise of target organs was significantly lower in virtual monoE images in comparison to polychromatic images (p < 0.001). The SNR and CNR were significantly higher in virtual monoE images (p < 0.001 for both). Subjective image quality of 70-keV virtual monoE images was significantly better (p < 0.001) for all evaluated parameters. Median scores for all subjective parameters were 3.0 versus 4.0 for polychromatic vs virtual monoE images, respectively. The inter-reader agreement for overall image quality was good (Kappa were 0.767 and 0.762 for polychromatic and virtual monoE images, respectively). CONCLUSION: In abdominal imaging, 70-keV virtual monoE CT images demonstrated significantly better noise, SNR, CNR, and subjective score compared to conventional 120-kVp polychromatic images.


Subject(s)
Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Humans , Middle Aged , Prospective Studies , Radiographic Image Interpretation, Computer-Assisted/methods , Signal-To-Noise Ratio , Tomography, X-Ray Computed/instrumentation
14.
Sci Rep ; 6: 26177, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27185492

ABSTRACT

Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used.


Subject(s)
Contrast Media/administration & dosage , Gold/administration & dosage , Image Processing, Computer-Assisted/methods , Iodine/administration & dosage , Nanoparticles/administration & dosage , Tomography, X-Ray Computed/methods , Models, Theoretical , Sensitivity and Specificity
15.
Phys Med Biol ; 61(6): 2407-31, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26943749

ABSTRACT

We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR < 0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29 ± 0.01, over-estimating stenosis severity as compared to 0.42 ± 0.01 (p < 0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50 ± 0.04 falsely indicating an actionable ischemic condition in a healthy territory. This ratio was 1.00 ± 0.08 at 70 keV. Results suggest that projection-based keV imaging with the SDCT system and proper processing could enable useful myocardial CTP, much improved over conventional CT.


Subject(s)
Myocardial Ischemia/diagnosis , Myocardial Perfusion Imaging/methods , Tomography, X-Ray Computed/methods , Animals , Myocardial Perfusion Imaging/instrumentation , Phantoms, Imaging , Swine , Tomography, X-Ray Computed/instrumentation
16.
Article in English | MEDLINE | ID: mdl-29568147

ABSTRACT

Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3±19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5±28.3mL/min/100g and 78.3±25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

17.
Article in English | MEDLINE | ID: mdl-32210495

ABSTRACT

The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29±0.01 vs. 0.55±0.01; p<1e-05). No significant difference was measured between 120 kVp and 70 keV mean TFR values on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80±10.98 vs. 40.85±23.44 ml/min/100g; p<1e-04). At 70 keV, BH was effectively minimized resulting in mean endocardial MBF of 40.85±15.3407 ml/min/100g vs. 74.09±5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.

18.
Article in English | MEDLINE | ID: mdl-33953456

ABSTRACT

Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12±2HU to 1±1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48±6HU to 1±5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28±6 HU to less than 4±4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

19.
Article in English | MEDLINE | ID: mdl-31942087

ABSTRACT

Myocardial CT perfusion (CTP) imaging is an application that should greatly benefit from spectral CT through the significant reduction of beam hardening (BH) artifacts using mono-energetic (monoE) image reconstructions. We used a prototype spectral detector CT (SDCT) scanner (Philips Healthcare) and developed advanced processing tools (registration, segmentation, and deconvolution-based flow estimation) for quantitative myocardial CTP in a porcine ischemia model with different degrees of coronary occlusion using a balloon catheter. The occlusion severity was adjusted with fractional flow reserve (FFR) measurements. The SDCT scanner is a single source, dual-layer detector system, which allows simultaneous acquisitions of low and high energy projections, hence enabling accurate projection-based material decomposition and effective reduction of BH-artifacts. In addition, the SDCT scanner eliminates partial scan artifacts with fast (0.27s), full gantry rotation acquisitions. We acquired CTP data under different hemodynamic conditions and reconstructed conventional 120kVp images and projection-based monoenergetic (monoE) images for energies ranging from 55keV-to-120keV. We computed and compared myocardial blood flow (MBF) between different reconstructions. With balloon completely deflated (FFR=1), we compared the mean attenuation in a myocardial region of interest before iodine arrival and at peak iodine enhancement in the left ventricle (LV), and we found that monoE images at 70keV effectively minimized the difference in attenuation, due to BH, to less than 1 HU compared to 14 HU with conventional 120kVp images. Flow maps under baseline condition (FFR=1) were more uniform throughout the myocardial wall at 70keV, whereas with 120kVp data about 12% reduction in blood flow was noticed on BH-hypoattenuated areas compared to other myocardial regions. We compared MBF maps at different keVs under an ischemic condition (FFR < 0.7), and we found that flow-contrast-to-noise-ratio (CNR f ) between LAD ischemic and remote healthy territories attains its maximum (2.87 ± 0.7) at 70keV. As energies diverge from 70keV, we noticed a steady decrease in CNRf and an overestimation of mean-MBF. Flow overestimation was also noticed for conventional 120kVp images in different myocardial regions.

20.
Article in English | MEDLINE | ID: mdl-32210494

ABSTRACT

Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

SELECTION OF CITATIONS
SEARCH DETAIL
...