Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 277(Pt 3): 134251, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084429

ABSTRACT

Aspergillus carbonarius infection leads to black mold rot in table grapes, causes grape decay, reduces fruit quality and marketability, which produces significant economic losses. This study investigated the antifungal efficacy of chitosan-stabilized lemon essential oil nanoemulsion (LO-CNE) against A. carbonarius and black mold rot of table grapes. LO-CNE was prepared with a mean diameter of 130.01 ± 8.34 nm. LO-CNE exhibited superior antifungal activity, reduced spore germination and germ tube elongation, decreased the antioxidant enzyme activities in A. carbonarius; the minimal inhibitory concentration of LO-CNE was determined to be 30 mg/mL. LO-CNE reduced the occurrence of black mold rot by 63 % and lesion diameter by 56.78 % in table grapes compared to the control. At their peak activity level, the grapes treated with LO-CNE exhibited significantly enhanced antioxidant and defense-related enzyme activities. Specifically, polyphenol oxidase activity increased by 2.27-fold, peroxidase activity by 2.22-fold, superoxide dismutase activity by 0.68-fold, catalase activity by 1.61-fold, phenylalanine ammonia-lyase activity by 3.38-fold, and ascorbate peroxidase activity by 2.36-fold. The LO-CNE application reduced natural decay by 95 %, weight loss by 15 % compared to the control, and effectively maintained the quality parameters of table grapes. Therefore, LO-CNE can be considered an alternative disease-control agent for grape preservation.


Subject(s)
Chitosan , Citrus , Emulsions , Oils, Volatile , Vitis , Vitis/microbiology , Vitis/drug effects , Vitis/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Citrus/microbiology , Citrus/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Antioxidants/pharmacology , Antioxidants/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Aspergillus/drug effects , Microbial Sensitivity Tests , Catechol Oxidase/metabolism
2.
Compr Rev Food Sci Food Saf ; 23(4): e13397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924311

ABSTRACT

Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.


Subject(s)
Fruit , Vegetables , Fruit/microbiology , Vegetables/microbiology , Fungi , Microbiota , Antifungal Agents/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Mycotoxins
3.
J Exp Bot ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912636

ABSTRACT

Recent research findings established the cruciality of Cys2/His2-type Zinc Finger Proteins (C2H2-ZFPs) in plant growth and their relevance in coping with various stressors. Nevertheless, the complex structure of the C2H2-ZFPs network and the molecular mechanisms of response to stress in adversity have received considerable attention and now require more in-depth examination. This paper reviews the structural characteristics, classification, and recent functional research advances of C2H2-ZFPs. In addition, it systematically introduces the roles of these proteins across diverse facets of plant biology, encompassing growth and development, responses to biotic and abiotic stresses, and laying the foundation for future functional studies of C2H2-ZFPs.

4.
Int J Food Microbiol ; 413: 110575, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38244385

ABSTRACT

Brown rot, aspergillosis and soft rot are the primary diseases of postharvest peach fruit. Our study aimed to investigate the biocontrol effect of Wickerhamomyces anomalus on the primary postharvest diseases of peach fruit and to explore its underlying physiological mechanism. The findings demonstrated that W. anomalus had an obvious inhibitory effect on Monilinia fructicola, Aspergillus niger and Rhizopus stolonifer. At the same time, W. anomalus can grow stably on the wound and surface of peach fruit at 25 °C and 4 °C and can form biofilm. W. anomalus increased the activity of resistance-related enzymes such as PPO, POD, GLU and the content of secondary metabolites such as total phenols, flavonoids and lignin in peach. Furthermore, the application of W. anomalus led to a reduced MDA level in peach fruit and increased activity of the active oxygen-scavenging enzyme system. This increase involved various antioxidant defense enzymes such as SOD and CAT, as well as ascorbic acid-glutathione (AsA-GSH) enzymes, including APX, GPX, GR, DHAR, and MDHAR. Our findings demonstrate that W. anomalus exerts its biocontrol effect by growing rapidly, competing with pathogens for nutrition and space, and enhancing the disease resistance and antioxidative capabilities of the peach fruit.


Subject(s)
Prunus persica , Saccharomycetales , Fruit , Plant Diseases/prevention & control
5.
J Agric Food Chem ; 72(2): 1025-1034, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38181197

ABSTRACT

In this study, the role of WSC1 in the infection of pear fruit by Penicillium expansum was investigated. The WSC1 gene was knocked out and complemented by Agrobacterium-mediated homologous recombination technology. Then, the changes in growth, development, and pathogenic processes of the knockout mutant and the complement mutant were analyzed. The results indicated that deletion of WSC1 slowed the growth rate, reduced the mycelial and spore yield, and reduced the ability to produce toxins and pathogenicity of P. expansum in pear fruits. At the same time, the deletion of WSC1 reduced the tolerance of P. expansum to cell wall stress factors, enhanced antioxidant capacity, decreased hypertonic sensitivity, decreased salt stress resistance, and was more sensitive to most metal ions. Our results confirmed that WSC1 plays an important role in maintaining cell wall integrity and responding to stress, toxin production, and the pathogenicity of P. expansum.


Subject(s)
Patulin , Penicillium , Pyrus , Fruit , Penicillium/genetics , Penicillium/pathogenicity , Virulence
6.
Int J Food Microbiol ; 410: 110480, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37977077

ABSTRACT

Postharvest soft rot of eggplant fruits caused by Pectobacterium carotovorum is a bacterial disease with a high disease incidence and produces substantial economic losses. This study aimed to control postharvest soft rot of eggplant fruits by Bacillus velezensis and investigate the possible control mechanisms based on the effects of B. velezensis on P. carotovorum subsp. carotovorum (Pcc) and eggplant fruits, respectively. B. velezensis effectively controlled postharvest soft rot of eggplant fruits and directly inhibited Pcc growth in vitro. The volatile metabolites produced by B. velezensis showed no inhibition on Pcc. Whereas the cell-free filtrate of B. velezensis significantly inhibited the growth of Pcc in vitro and in vivo. Notably, methanol-soluble precipitates obtained from cell-free filtrate showed significant inhibition on Pcc, and the primary inhibitory substances were identified as surfactin isoforms. Besides, iturin and fengycin isoforms with much lower relative abundance were also detected in the methanol-soluble precipitates. Furthermore, B. velezensis enhanced the activities of reactive oxygen species (ROS) scavenging enzymes in eggplant fruits that alleviated ROS and oxidative damage; thereby, B. velezensis enhanced the fruits' disease resistance.


Subject(s)
Solanum melongena , Fruit , Methanol , Reactive Oxygen Species , Protein Isoforms
7.
Plant Physiol Biochem ; 206: 108303, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38154299

ABSTRACT

Cytochrome P450s (CYPs) constitute the largest group of enzymes in plants and are involved in a variety of processes related to growth and protection. However, the CYP gene superfamily in pear (Pyrus bretschneideri) and their characteristics is unclear. Through a comprehensive genome-wide analysis, this article identified a total of 74 CYP genes in the P. bretschneideri genome, which were categorized into fourteen families. Motif analysis reveals that most of the ten motifs predicted were with the p450 conserved domain. The majority of the CYP genes have exon arrangements. Furthermore, promoter analysis unveiled a multitude of cis-acting elements associated with diverse responsiveness including hormones, light responsive, anoxic specific inducibility and anaerobic induction. Analysis of the transcriptome data reveal that about 80% of the pear CYPs genes were upregulated and they were positively correlated with the antioxidant's parameters such as total flavonoids and total phenol content as well as ABTS and DPPH radicals. RT-qPCR analysis confirmed that the CYP genes could be regulated in pear. Collectively, our results reveal comprehensive insights into the CYP superfamily in pear and make a valuable contribution to the ongoing process of functional validation.


Subject(s)
Basidiomycota , Pyrus , Pyrus/genetics , Pyrus/metabolism , Genome, Plant , Multigene Family , Ascorbic Acid/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochromes/metabolism , Phylogeny , Gene Expression Regulation, Plant
8.
J Agric Food Chem ; 71(46): 17584-17596, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37938803

ABSTRACT

Postharvest diseases caused by fungal pathogens are significant contributors to the postharvest losses of fruits. Moreover, some fungal pathogens produce mycotoxins, which further compromise the safety and quality of fruits. In this review, the potential of biotechnological and biocontrol approaches for mitigating postharvest diseases and mycotoxins in fruits is explored. The review begins by discussing the impact of postharvest diseases on fruit quality and postharvest losses. Next, it provides an overview of major postharvest diseases caused by fungal pathogens. Subsequently, it delves into the role of biotechnological approaches in controlling these diseases. The review also explored the application of biocontrol agents, such as antagonistic yeasts, bacteria, and fungi, which can suppress pathogen growth. Furthermore, future trends and challenges in these two approaches are discussed in detail. Overall, this review can provide insights into promising biotechnological and biocontrol strategies for managing postharvest diseases and mycotoxins in fruits.


Subject(s)
Fruit , Mycotoxins , Fruit/microbiology , Yeasts , Biotechnology
9.
J Hazard Mater ; 448: 130975, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36860082

ABSTRACT

With the increasing global climate change, ochratoxin A (OTA) pollution in food and environment has become a serious and potential risk element threatening food safety and human health. Biodegradation of mycotoxin is an eco-friendly and efficient control strategy. Still, research works are warranted to develop low-cost, efficient, and sustainable approaches to enhance the mycotoxin degradation efficiency of microorganisms. In this study, the activities of N-acetyl-L-cysteine (NAC) against OTA toxicity were evidenced, and its positive effects on the OTA degradation efficiency of antagonistic yeast, Cryptococcus podzolicus Y3 were verified. Co-culturing C. podzolicus Y3 with 10 mM NAC improved 100% and 92.6% OTA degradation rate into ochratoxin α (OTα) at 1 d and 2 d. The excellent promotion role of NAC on OTA degradation was observed even at low temperatures and alkaline conditions. C. podzolicus Y3 treated with OTA or OTA+NAC promoted reduced glutathione (GSH) accumulation. GSS and GSR genes were highly expressed after OTA and OTA+NAC treatment, contributing to GSH accumulation. In the early stages of NAC treatment, yeast viability and cell membrane were reduced, but the antioxidant property of NAC prevented lipid peroxidation. Our finding provides a sustainable and efficient new strategy to improve mycotoxin degradation by antagonistic yeasts, which could be applied to mycotoxin clearance.


Subject(s)
Mycotoxins , Saccharomyces cerevisiae , Humans , Acetylcysteine , Biodegradation, Environmental
10.
Food Chem ; 417: 135785, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36913869

ABSTRACT

The intracellular enzymes of antagonistic yeast are effective in controlling patulin (PAT) contamination. However, countless enzymes that have been revealed remain functionally uncharacterized. The study built on previous transcriptomic data obtained by our research group to amplify and express a gene encoding a short-chain dehydrogenase/reductase (SDR) in Meyerozyma guilliermondii. Overexpression of SDR increased the tolerance of M. guilliermondii to PAT and the ability to degrade PAT of the intracellular enzymes. Furthermore, MgSDR-overexpressed M. guilliermondii showed higher PAT degradation in juices (apple and peach) and controlled the blue mold of pears at 20 °C and 4 °C while significantly reduced the content of PAT and the biomass of Penicillium expansum in decayed tissues than wild-type M. guilliermondii. This study provides theoretical references for the subsequent heterologous expression, formulation, and application of the SDR protein from M. guilliermondii and contributes to elucidating the PAT degradation mechanism of antagonistic yeasts.


Subject(s)
Malus , Patulin , Penicillium , Pyrus , Pyrus/metabolism , Patulin/analysis , Malus/metabolism , Fruit/chemistry , Yeasts/metabolism , Penicillium/metabolism
11.
Foods ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36496662

ABSTRACT

Transcription factors play a key role in Penicillium expansum infection process. Although the crucial characteristics of some transcription factors of pathogenic fungi have been found, many transcription factors involved in P. expansum infections have not been explored and studied. This study aimed to screen the transcription factors of P. expansum involved in postharvest pear infections by ATAC-seq analysis and to analyze the differentially expressed peak-related genes by GO enrichment and KEGG pathway analysis. Our results found the up-regulation of differentially expressed peak-related genes involved in the MAPK signaling pathway, pentose phosphate pathway, starch and sucrose metabolism, and pentose and glucuronate interconversions. Our study especially confirmed the differential regulation of transcription factors MCM1, Ste12 and gene WSC in the MAPK signaling pathway and PG1, RPE1 in the pentose and glucuronate interconversions pathway. These transcription factors and related genes might play an essential role in pear fruit infection by P. expansum. RT-qPCR validation of twelve expressed peak-related genes in P. expansum showed that the expression levels of these twelve genes were compatible with the ATAC-Seq. Our findings might shed some light on the regulatory molecular networks consisting of transcription factors that engaged in P. expansum invasion and infection of pear fruits.

12.
Food Chem Toxicol ; 169: 113437, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36165818

ABSTRACT

Anarchic growth of ochratoxin A (OTA) producing fungi during crop production, prolonged storage, and processing results in OTA contamination in foodstuffs. OTA in food exacerbates the risk of health and economic problems for consumers and farmers worldwide. Although the toxic effects of OTA on human health have not been well established, comprehensive preventive and remedial measures will be essential to eliminate OTA from foodstuffs. Strict regulations, controlling OTA at pre- or post-harvest stage, and decontamination of OTA have been adopted to prevent human and animal OTA exposure. Biological control of OTA and bio-decontamination are the most promising strategies due to their safety, specificity and nutritional value. This review addresses the current understanding of OTA biodegradation mechanisms and recent developments in OTA control and bio-decontamination strategies. Additionally, this review analyses the strength and weaknesses of different OTA control methods and the contemporary approaches to enhance the efficiency of biocontrol agents. Overall, this review will support the implementation of new strategies to effectively control OTA in food sectors. Further studies on efficacy-related issues, production issues and cost-effectiveness of OTA biocontrol are to be carried out to improve the knowledge, develop improved delivery technologies and safeguard the durability of OTA biocontrol approaches.


Subject(s)
Food Contamination , Ochratoxins , Animals , Biodegradation, Environmental , Food Contamination/analysis , Food Contamination/prevention & control , Humans , Ochratoxins/metabolism , Ochratoxins/toxicity
13.
Food Res Int ; 158: 111562, 2022 08.
Article in English | MEDLINE | ID: mdl-35840251

ABSTRACT

Penicillium expansum is the causative fungus of blue mold decay in postharvest pears resulting in substantial economic losses. Investigating P. expansum-pear fruit interactions is necessary to help develop P. expansum control strategies for effective and safe pear production. Investigating the P. expansum gene expression alterations and essential gene functions during the infection process is indispensable. Based on our results, the necrosis-inducing protein (NIP) gene was closely associated with genes related to plant cell wall degrading enzymes (CWDEs) and involved in P. expansum virulence. The NIP has high homology with other already-known fungal NIPs. To evidence the role of NIP in P. expansum virulence, NIP mutant (including knockout (ΔNIP) and complementation mutant (cNIP)) P. expansum were generated. Despite the NIP deletion did not affect the basic morphology and structure of P. expansum, it slowed down the fungal growth and hyphal production, thus reducing P. expansum's sporulation and patulin (PAT) accumulation. Furthermore, the deletion of NIP reduced the pathogenicity of P. expansum in pear. The complementation of NIP (cNIP) restored the growth, conidia production, PAT accumulation, and virulence of ΔNIP to the level of wild-type P. expansum. In addition, PAT can cause decay and aggravate the disease severity of wild-type P. expansum and ΔNIP on pears. Our results confirmed NIP plays a crucial role in P. expansum's growth, hyphal production, and pathogenicity in pears.


Subject(s)
Patulin , Penicillium , Pyrus , Necrosis , Plant Diseases/microbiology , Pyrus/metabolism , Virulence/genetics
14.
Foods ; 10(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206622

ABSTRACT

Transcriptome analysis (TA) was conducted to characterize the transcriptome changes in postharvest disease-related genes of table grapes following treatment with Pichia anomala induced with chitosan (1% w/v). In the current study, the difference in the gene expression of table grapes after treatment with P. anomala induced with chitosan and that of a control group was compared 72 h post-inoculation. The study revealed that postharvest treatment of table grapes with P. anomala induced with chitosan could up-regulate genes that have a pivotal role in the fruit's disease defense. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results also confirmed that GO terms and the KEGG pathways, which have pivotal roles in plant disease resistance, were significantly enriched. The up-regulated genes of the treatment group have a unique function in the fruit's disease resistance compared to the control group. Generally, most genes in the plant-pathogen interaction pathway; the plant Mitogen-activated protein kinase (MAPK) signaling pathway; the plant hormone signal transduction pathway; the pathway of glutathione metabolism; the pathway of phenylalanine, tyrosine, and tryptophan biosynthesis; and the pathway of flavonoid biosynthesis were all up-regulated. These up-regulations help the fruit to synthesize disease-resistant substances, regulate the reactive oxygen species (ROS), enhance the fruit cell wall, and enrich hormone signal transduction during the pathogen's attack. This study is useful to overcome the lags in applying transcriptomics technology in postharvest pathology, and will provide insight towards developing other alternative methods to using bio-pesticides to control postharvest diseases of perishables.

15.
Pest Manag Sci ; 77(10): 4425-4436, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33987938

ABSTRACT

BACKGROUND: In the process of biological control, the antagonistic yeasts contend with various stresses that negatively influence yeasts' biocontrol efficiency. In the current study, we investigated the effect of trehalose supplementation on the biocontrol efficiency and oxidative stress tolerance of Sporidiobolus pararoseus Y16. RESULTS: S. pararoseus Y16, an antagonistic yeast cultured in trehalose supplemented medium, exhibited better biocontrol efficiency against Penicillium expansum and Aspergillus tubingensis in table grapes. Trehalose-treated S. pararoseus Y16 cells showed good proliferation efficiency and oxidative stress tolerance than untreated cells. Increased ß-1,3-glucanase, catalase, superoxide dismutase activity, and low protein carbonylation were observed in trehalose-amended S. pararoseus Y16 upon H2 O2 exposure. The RNA sequencing results indicated that trehalose significantly altered the transcriptome of S. pararoseus Y16. The GO, KEGG, and COG annotations revealed that the differentially regulated genes corresponded to the various biological process of the yeast. CONCLUSION: Our findings suggested that trehalose use could enhance the biocontrol efficiency and oxidative stress tolerance of S. pararoseus Y16. Trehalose supplementation altered the transcriptome of S. pararoseus Y16, particularly the genes that correspond to amino acid metabolism, nucleotide metabolism, and protein modification. Thereby the oxidative stress tolerance and biological control efficiency of S. pararoseus Y16 was enhanced by trehalose. © 2021 Society of Chemical Industry.


Subject(s)
Transcriptome , Trehalose , Aspergillus , Basidiomycota , Dietary Supplements , Oxidative Stress , Penicillium
16.
Compr Rev Food Sci Food Saf ; 20(3): 2508-2533, 2021 05.
Article in English | MEDLINE | ID: mdl-33665962

ABSTRACT

Fruit-based diets have been adopted by the public worldwide because of their nutritional value. Many advances have also been made in the elucidation of host-pathogen interaction in the postharvest phase of fruits, in the hope of improving the management of diseases caused by pathogenic molds. In this study, we presented the molecular mechanisms by which pathogenic mold infects fruit in the postharvest phase, and focused on the knowledge gained from recent molecular techniques such as differential analysis of gene expression, targeted insertion, and mutagenesis. Current postharvest pathogenic fungal control strategies were then examined on the basis of their mechanisms for altering the infection process in order to explore new perspectives for securing fruit production. We found that biotechnological advances have led to an understanding of the new basic molecular processes involved in fruit fungal infection and to the identification of new genes, proteins and key factors that could serve as ideal targets for innovative antifungal strategies. In addition, the most commonly used steps to evaluate an approach to disrupt the fruit fungal infection process are mainly based on the inhibition of mycelial growth, spore germination, disruption of Adenosine triphosphate (ATP) synthesis, induction of oxidative stress, cell wall membrane damage, and inhibition of key enzymes. Finally, the alteration of the molecular mechanisms of signaling and response pathways to infection stimulation should also guide the development of effective control strategies to ensure fruit production.


Subject(s)
Fruit , Mycoses , Antifungal Agents , Fungi , Host-Pathogen Interactions
17.
Microorganisms ; 7(12)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835573

ABSTRACT

Penicillium digitatum is one of the most important pathogens known widely to cause postharvest losses of citrus. It is significant to explore its infection mechanism to improve the control technology of postharvest diseases of citrus. This research aimed to study the changes in gene expression of P. digitatum at its early stages of citrus infection by transcriptomics sequencing and bioinformatics analysis in order to explore the molecular mechanism of its infection. The results showed that genes associated with pathogenic factors, such as cell wall degrading enzymes, ethylene, organic acids, and effectors, were significantly up-regulated. Concurrently, genes related to anti-oxidation and iron transport were equally up-regulated at varying degrees. From this study, we demonstrated a simple blueprint for the infection mechanism of P. digitatum in Citrus reticulata Blanco, which provided a new direction for subsequent pathological research and paves the way for developing new control strategies.

18.
Microorganisms ; 7(11)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652932

ABSTRACT

Green mold disease, a common citrus post-harvest disease caused by Penicillium digitatum, has an unresolved initial infection mechanism. Understanding the infection mechanism leads to the development of potential controls and preventive measures against the disease. The present study aimed to delineate the infection mechanism by investigating spore germination, changes of organic molecules and enzyme activity, and differential expression of genes in the P. digitatum infection. P. digitatum spore germination was observed by a pathology section scanner and it was found that in vivo germination was 3 h behind the in vitro germination. In addition, cell wall degrading enzymes and soluble sugar and titratable acid content during the infection process measured dynamically. The level of pectinase reached its maximum of 6067 U/g before 48 hpi, while cellulase increased rapidly after 48 hpi. The soluble sugar and organic acid content increased considerably with the progression of the infection. The transcriptomic profile of P. digitatum before and after infection was analyzed by RNA-seq. The genes related to cell wall degrading enzymes were significantly up-regulated and annotated to participate in two major carbon source synthesis pathways. The study delineated the initial infection mechanism of P. digitatum which eventually opened the gate way for the development of new control strategies in the future.

19.
J Agric Food Chem ; 67(42): 11758-11768, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31577438

ABSTRACT

Patulin contamination not only is a menace to human health but also causes serious environmental problems worldwide due to the synthetic fungicides that are used to control it. This study focused on investigating the patulin degradation mechanism in Pichia caribbica at the molecular level. According to the results, P. caribbica (2 × 106 cells/mL) was able to degrade patulin from 20 µg/mL to an undetectable level in 72 h. The RNA-seq data showed patulin-induced oxidative stress and responses in P. caribbica. The deletion of PcCRG1 led to a significant decrease in patulin degradation by P. caribbica, whereas the overexpression of PcCRG1 accelerated the degradation of patulin. The study identified that PcCRG1 protein had the ability to degrade patulin in vitro. Overall, we demonstrated that the patulin degradation process in P. caribbica was more than one way; PcCRG1 was an S-adenosylmethionine-dependent methyltransferase and played an important role in the patulin degradation process in P. caribbica.


Subject(s)
Fungal Proteins/metabolism , Fungicides, Industrial/metabolism , Methyltransferases/metabolism , Patulin/metabolism , Pichia/metabolism , S-Adenosylmethionine/metabolism , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Methyltransferases/chemistry , Methyltransferases/genetics , Pichia/enzymology , Pichia/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL