Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(46): 43474-43489, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38027335

ABSTRACT

Osteosarcoma, a highly metastasizing bone neoplasm, is a leading cause of death and disability in children and adolescents worldwide. Osteosarcoma is only suboptimally responsive to surgery and radio- and chemotherapy, that too with adverse side effects. Hence, there is a necessary need for safer alternative therapeutic approaches. This study evaluated the anticancer effects of the semi-synthetic compound, pterostilbene-isothiocyanate (PTER-ITC), on human osteosarcoma MG-63 cells through cytotoxicity, wound-healing, and transwell-migration assays. Results showed that PTER-ITC specifically inhibited the survival, proliferation, and migration of osteosarcoma cells. PTER-ITC induced apoptosis in MG-63 cells by disrupting mitochondrial membrane potential, as evident from the outcomes of different cytological staining. The antimetastatic potential of PTER-ITC was evaluated through immunostaining, RT-qPCR, and immunoblotting. In silico (molecular docking and dynamic simulation) and, subsequently, biochemical [co-immunoprecipitation (Co-IP) and luciferase reporter] assays deciphered the underlying mode-of-action of this compound. PTER-ITC increased E-cadherin and reduced N-cadherin levels, thereby facilitating the reversal of epithelial-mesenchymal transition (EMT). It also modulated the expressions of proliferative cell nuclear antigen (PCNA), caspase-3, poly [ADP-ribose] polymerase (PARP-1) and matrix metalloproteinase-2/9 (MMPs-2/9) at transcriptional and translational levels. PTER-ITC interfered with the ß-catenin/transcription factor-4 (TCF-4) interaction in silico by occupying the ß-catenin binding site on TCF-4, confirmed by their reduced physical interactions (Co-IP assay). This inhibited transcriptional activation of TCF-4 by ß-catenin (as shown by luciferase reporter assay). In conclusion, PTER-ITC exhibited potent anticancer effects in vitro against human osteosarcoma cells by abrogating the ß-catenin/TCF-4 interaction. Altogether, this study suggests that PTER-ITC may be regarded as a new approach for osteosarcoma treatment.

2.
3 Biotech ; 13(6): 193, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37205177

ABSTRACT

Converging evidences identifies that microRNA-21 (miR-21) is responsible for drug resistance in breast cancer. This study aims to evaluate the miR-21-modulatory potential of a hybrid compound, pterostilbene-isothiocyanate (PTER-ITC), in tamoxifen-resistant MCF-7 (TR/MCF-7) and 5-fluorouracil-resistant MDA-MB 231 (5-FUR/MDA-MB 231) breast cancer cell lines, established by repeated exposure to gradually increasing the concentrations of tamoxifen and 5-fluorouracil, respectively. The outcome of this study shows that PTER-ITC effectively reduced the TR/MCF-7 (IC50: 37.21 µM) and 5-FUR/MDA-MB 231 (IC50: 47.00 µM) cell survival by inducing apoptosis, inhibiting cell migration, colony and spheroid formations in TR/MCF-7 cells, and invasiveness of 5-FUR/MDA-MB 231 cells. Most importantly, PTER-ITC significantly reduced the miR-21 expressions in these resistant cell lines. Moreover, the downstream tumor suppressor target gene of miR-21 such as PTEN, PDCD4, TIMP3, TPM1, and Fas L were upregulated after PTER-ITC treatment, as observed from transcriptional (RT-qPCR) and translational (immunoblotting) data. In silico and miR-immunoprecipitation (miR-IP) results showed reduced Dicer binding to pre-miR-21, after PTER-ITC treatment, indicating inhibition of miR-21 biogenesis. Collectively, the significance of this study is indicated by preliminary evidence for miR-21-modulatory effects of PTER-ITC that highlights the potential of this hybrid compound as an miR-21-targeting therapeutic agent.

3.
Biochim Biophys Acta Biomembr ; 1865(5): 184143, 2023 06.
Article in English | MEDLINE | ID: mdl-36863681

ABSTRACT

Ca2+-ATPases are membrane pumps that transport calcium ions across the cell membrane and are dependent on ATP. The mechanism of Listeria monocytogenes Ca2+-ATPase (LMCA1) in its native environment remains incompletely understood. LMCA1 has been investigated biochemically and biophysically with detergents in the past. This study characterizes LMCA1 using the detergent-free Native Cell Membrane Nanoparticles (NCMNP) system. As demonstrated by ATPase activity assays, the NCMNP7-25 polymer is compatible with a broad pH range and Ca2+ ions. This result suggests that NCMNP7-25 may have a wider array of applications in membrane protein research.


Subject(s)
Adenosine Triphosphatases , Calcium-Transporting ATPases , Adenosine Triphosphatases/metabolism , Calcium-Transporting ATPases/chemistry , Cell Membrane/metabolism , Membrane Proteins/metabolism , Membranes/metabolism
4.
Proteins ; 91(4): 508-517, 2023 04.
Article in English | MEDLINE | ID: mdl-36345957

ABSTRACT

Dye-decolorizing peroxidases (DyPs), a type of heme-containing oxidoreductase enzymes, catalyze the peroxide-dependent oxidation of various industrial dyes as well as lignin and lignin model compounds. In our previous work, we have recently reported the crystal structures of class A-type DyP from Bacillus subtilis at pH 7.0 (BsDyP7), exposing the location of three binding sites for small substrates and high redox-potential substrates. The biochemical studies revealed the optimum acidic pH for enzyme activity. In the present study, the crystal structure of BsDyP at acidic pH (BsDyP4) reveals two-monomer units stabilized by intermolecular salt bridges and a hydrogen bond network in a homo-dimeric unit. Based on the monomeric structural comparison of BsDyP4 and BsDyP7, minor differences were observed in the loop regions, that is, LI (Ala64-Gln71), LII (Glu96-Lys108), LIII (Pro117-Leu124), and LIV (Leu295-Asp303). Despite these differences, BsDyP4 adopts similar heme architecture as well as three substrate-binding sites to BsDyP7. In BsDyP4, a shift in Asp187, heme pocket residue discloses the plausible reason for optimal acidic pH for BsDyP activity. This study provides insight into the structural changes in BsDyP at acidic pH, where BsDyP is biologically active.


Subject(s)
Bacillus subtilis , Peroxidase , Peroxidase/metabolism , Coloring Agents/metabolism , Lignin/chemistry , Peroxidases/chemistry , Peroxidases/metabolism , Hydrogen-Ion Concentration , Heme/metabolism
5.
J Biomol Struct Dyn ; 41(10): 4650-4666, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35510600

ABSTRACT

The recent pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) is a viral respiratory disease that has been spread all over the globe. Therefore, it is an urgent requirement to identify and develop drugs for this contagious infection. The papain-like protease (PLpro) of SARS-CoV-2 performs critical functions in virus replication and immune evasion, making it an enticing therapeutic target. SARS-CoV-2 and SARS-CoV PLpro proteases have significant similarities, and an inhibitor discovered for SARS-CoV PLpro is an exciting first step toward therapeutic development. Here, a set of antiviral molecules were screened at the catalytic and S-binding allosteric sites of papain-like protease (PLpro). Molecular docking results suggested that five molecules (44560613, 136277567, S5652, SC75741, and S3833) had good binding affinities at both sites of PLpro. Molecular dynamics analysis like root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and hydrogen bond results showed that identified molecules with PLpro tend to form stable PLpro-inhibitor(s) complexes. Molecular Mechanics/Position-Boltzmann Surface Area (MMPBSA) analysis confirmed that antiviral molecules bound PLpro complex had lower energy (-184.72 ± 7.81 to -215.67 ± 6.73 kJ/mol) complexes. Noticeably, computational approaches revealed promising antivirals candidates for PLpro, which may be further tested by biochemical and cell-based assays to assess their potential for SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Peptide Hydrolases , Humans , Papain , SARS-CoV-2 , Molecular Docking Simulation , Antiviral Agents/pharmacology , Molecular Dynamics Simulation
6.
ACS Omega ; 7(43): 38448-38458, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36340146

ABSTRACT

Staphylococcus aureus is considered as one of the most widespread bacterial pathogens and continues to be a prevalent cause of mortality and morbidity across the globe. FmtA is a key factor linked with methicillin resistance in S. aureus. Consequently, new antibacterial compounds are crucial to combat S. aureus resistance. Here, we present the virtual screening of a set of compounds against the available crystal structure of FmtA. The findings indicate that gemifloxacin, paromomycin, streptomycin, and tobramycin were the top-ranked potential drug molecules based on the binding affinity. Furthermore, these drug molecules were analyzed with molecular dynamics simulations, which showed that the identified molecules formed highly stable FmtA-inhibitor(s) complexes. Molecular mechanics Poisson-Boltzmann surface area and quantum mechanics/molecular mechanics calculations suggested that the active site residues (Ser127, Lys130, Tyr211, and Asp213) of FmtA are crucial for the interaction with the inhibitor(s) to form stable protein-inhibitor(s) complexes. Moreover, fluorescence- and isothermal calorimetry-based binding studies showed that all the molecules possess dissociation constant values in the micromolar scale, revealing a strong binding affinity with FmtAΔ80, leading to stable protein-drug(s) complexes. The findings of this study present potential beginning points for the rational development of advanced, safe, and efficacious antibacterial agents targeting FmtA.

7.
Biochem Pharmacol ; 206: 115284, 2022 12.
Article in English | MEDLINE | ID: mdl-36209841

ABSTRACT

Prolonged glucocorticoid treatment often leads to glucocorticoid-induced osteoporosis (GIOP), a common iatrogenic complication. This study has explored the anti-osteoporotic potential of semi-synthetic compound, pterostilbene isothiocyanate (PTER-ITC) in GIOP rat model and bone formation potential in vitro. Dysregulated bone-remodelling leads to osteoporosis. PTER-ITC has shown anti-osteoclastogenic activity in vitro. However, its molecular target remains unidentified, which has been explored in this study through in silico and experimental approaches. Alizarin Red S and von-Kossa staining, and alkaline phosphatase (ALP) activity showed the osteogenic differentiation potential of PTER-ITC in pre-osteoblastic mouse MC3T3-E1 and human hFOB 1.19 cells, further, confirmed through the expressions of osteogenic markers at transcriptional (RT-qPCR) and translational (immunoblotting) levels. The anti-osteoclastogenic property of PTER-ITC was confirmed through inhibition of actin ring formation in mouse RAW 264.7 and human THP-1 macrophagic cells. Molecular docking and molecular dynamic simulation showed that PTER-ITC inhibited the crucial osteoclastogenic RANK/TRAF6 interaction, which was further confirmed biochemically through co-immunoprecipitation assay. Osteoporotic bone architecture [validated through scanning electron microscopy (SEM), X-ray radiography, and micro-computed tomography (µ-CT)], physiology (confirmed through compression testing, Young's modulus and stress versus strain output) and histology (verified through hematoxylin-eosin, Alizarin Red S, von-Kossa and Masson-trichrome staining) of PTER-ITC-treated GIOP female Wistar rats were assuaged. Osteoporotic amelioration through PTER-ITC treatment was further substantiated through serum biomarkers, like, parathyroid hormone (PTH), ALP, calcium (Ca2+), Procollagen type I N-terminal propeptide (P1NP), and 25-hydroxy vitamin D. In conclusion, this study identifies the molecular target of PTER-ITC in impeding osteoclastogenesis and facilitating osteogenesis to ameliorate osteoporosis.


Subject(s)
Isothiocyanates , Osteogenesis , Osteoporosis , Stilbenes , Animals , Female , Humans , Mice , Rats , Cell Differentiation , Glucocorticoids/adverse effects , Isothiocyanates/pharmacology , Molecular Docking Simulation , Osteoblasts/metabolism , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats, Wistar , TNF Receptor-Associated Factor 6/metabolism , X-Ray Microtomography , Stilbenes/pharmacology , Receptor Activator of Nuclear Factor-kappa B
8.
J Mol Graph Model ; 116: 108262, 2022 11.
Article in English | MEDLINE | ID: mdl-35839717

ABSTRACT

Klebsiella pneumonia is known to cause several nosocomial infections in immunocompromised patients. It has developed resistance against a broad range of presently available antibiotics, resulting in high mortality rates in patients and declared an urgent threat. Therefore, exploration of possible novel drug targets against this opportunistic bacteria needs to be undertaken. In the present study, we performed an extensive in-silico analysis for functional and structural annotation and characterized HP CP995_08280 from K. pneumonia as a drug target and aimed to identify potent drug candidates. The functional and structural studies using several bioinformatics tools and databases predicted that HP CP995_08280 is a cytosolic protein that belongs to the ß-lactamase family and shares structural similarity with FmtA protein from Staphylococcus aureus (PDB ID: 5ZH8). The structure of HP CP995_08280 was successfully modeled followed by structure-based virtual screening, docking, molecular dynamics, and Molecular mechanic/Poisson-Boltzmann surface area (MMPBSA) were performed to identify the potential compounds. We have found five potent antibacterial molecules, namely BDD 24083171, BDD 24085737, BDE 25098678, BDE 33638819, and BDE 33672484, which exhibited high binding affinity (>-7.5 kcal/mol) and were stabilized by hydrogen bonding and hydrophobic interactions with active site residues (Ser42, Lys45, Tyr126, and Asp128) of protein. Molecular dynamics and MMPBSA revealed that HP CP995_08280 - ligand(s) complexes were less dynamic and more stable than native HP CP995_08280. Hence, the present study may serve as a potential lead for developing inhibitors against drug-resistant Klebsiella pneumonia.


Subject(s)
Molecular Dynamics Simulation , Pneumonia , Anti-Bacterial Agents/pharmacology , Humans , Klebsiella , Ligands , Molecular Docking Simulation
9.
J Biomol Struct Dyn ; 40(19): 8725-8739, 2022.
Article in English | MEDLINE | ID: mdl-33939584

ABSTRACT

Huanglongbing (HLB) is a worldwide citrus plant disease-related to non-culturable and fastidious α-proteobacteria Candidatus Liberibacter asiaticus (CLas). In CLas, Peroxiredoxin (Prx) plays a major role in the reduction of the level of reactive species such as reactive oxygen species (ROS), free radicals and peroxides, etc. Here, we have used structure-based drug designing approach was used to screen and identify the potent molecules against 2Cys Prx. The virtual screening of fragments library was performed against the three-dimensional validated model of Prx. To evaluate the binding affinity, the top four molecules (N-Boc-2-amino isobutyric acid (B2AI), BOC-L-Valine (BLV), 1-(boc-amino) cyclobutane carboxylic acid (1BAC), and N-Benzoyl-DL-alanine (BDLA)) were docked at the active site of Prx. The molecular docking results revealed that all the identified molecules had a higher binding affinity than Tert butyl hydroperoxide (TBHP), a substrate of Prx. Molecular dynamics analysis such as RMSD, Rg, SASA, hydrogen bonds, and PCA results indicated that Prx-inhibitor(s) complexes had lesser fluctuations and were more stable and compact than Prx-TBHP complex. MMPBSA results confirmed that the identified compounds could bind at the active site of Prx to form a lower energy Prx-inhibitor(s) complex than Prx-TBHP complex. The identified potent molecules may pave the path for the development of antimicrobial agents against CLA.Communicated by Ramaswamy H. Sarma.


Subject(s)
Citrus , Rhizobiaceae , Rhizobiaceae/metabolism , Peroxiredoxins/chemistry , Peroxiredoxins/metabolism , Molecular Docking Simulation , Plant Diseases/microbiology
10.
J Biomol Struct Dyn ; 40(9): 4084-4099, 2022 06.
Article in English | MEDLINE | ID: mdl-33251943

ABSTRACT

The Coronavirus Disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 is an exceptionally contagious disease that leads to global epidemics with elevated mortality and morbidity. There are currently no efficacious drugs targeting coronavirus disease 2019, therefore, it is an urgent requirement for the development of drugs to control this emerging disease. Owing to the importance of nucleocapsid protein, the present study focuses on targeting the N-terminal domain of nucleocapsid protein from severe acute respiratory syndrome coronavirus 2 to identify the potential compounds by computational approaches such as pharmacophore modeling, virtual screening, docking and molecular dynamics. We found three molecules (ZINC000257324845, ZINC000005169973 and ZINC000009913056), which adopted a similar conformation as guanosine monophosphate (GMP) within the N-terminal domain active site and exhibiting high binding affinity (>-8.0 kcalmol-1). All the identified compounds were stabilized by hydrogen bonding with Arg107, Tyr111 and Arg149 of N-terminal domain. Additionally, the aromatic ring of lead molecules formed π interactions with Tyr109 of N-terminal domain. Molecular dynamics and Molecular mechanic/Poisson-Boltzmann surface area results revealed that N-terminal domain - ligand(s) complexes are less dynamic and more stable than N-terminal domain - GMP complex. As the identified compounds share the same corresponding pharmacophore properties, therefore, the present results may serve as a potential lead for the development of inhibitors against severe acute respiratory syndrome coronavirus 2. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphoproteins/antagonists & inhibitors , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
11.
J Comput Biol ; 28(12): 1228-1247, 2021 12.
Article in English | MEDLINE | ID: mdl-34847746

ABSTRACT

The detrimental effect of coronavirus disease 2019 (COVID-19) pandemic has manifested itself as a global crisis. Currently, no specific treatment options are available for COVID-19, so therapeutic interventions to tackle the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection must be urgently established. Therefore, cohesive and multidimensional efforts are required to identify new therapies or investigate the efficacy of small molecules and existing drugs against SARS-CoV-2. Since the RNA-dependent RNA Polymerase (RdRP) of SARS-CoV-2 is a promising therapeutic target, this study addresses the identification of antiviral molecules that can specifically target SARS-CoV-2 RdRP. The computational approach of drug development was used to screen the antiviral molecules from two antiviral libraries (Life Chemicals [LC] and ASINEX) against RdRP. Here, we report six antiviral molecules (F3407-4105, F6523-2250, F6559-0746 from LC and BDG 33693278, BDG 33693315, LAS 34156196 from ASINEX), which show substantial interactions with key amino acid residues of the active site of SARS-CoV-2 RdRP and exhibit higher binding affinity (>7.5 kcalmol-1) than Galidesivir, an Food and Drug Administration-approved inhibitor of the same. Further, molecular dynamics simulation and Molecular Mechanics Poisson-Boltzmann Surface Area results confirmed that identified molecules with RdRP formed higher stable RdRP-inhibitor(s) complex than RdRP-Galidesvir complex. Our findings suggest that these molecules could be potential inhibitors of SARS-CoV-2 RdRP. However, further in vitro and preclinical experiments would be required to validate these potential inhibitors of SARS-CoV-2 protein.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Computational Chemistry/methods , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Pandemics , SARS-CoV-2/drug effects , Amino Acid Motifs , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Catalytic Domain/drug effects , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Databases, Chemical , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protein Conformation , SARS-CoV-2/enzymology , Sequence Alignment , Sequence Homology, Amino Acid , Small Molecule Libraries
12.
Int J Biol Macromol ; 193(Pt A): 601-608, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34687768

ABSTRACT

Dye-decolorizing peroxidases (DyPs) are heme-containing peroxidases, which have promising application in biodegradation of phenolic lignin compounds and in detoxification of dyes. In this study, the crystal structure of BsDyP- veratryl alcohol (VA) complex delves deep into the binding of small substrate molecules within the DyP heme cavity. The biochemical analysis shows that BsDyP oxidizes the VA with a turnover number of 0.065 s-1, followed by the oxidation of 2,6-dimethoxyphenol (DMP) and guaiacol with a comparable turnover number (kcat) of 0.07 s-1 and 0.07 s-1, respectively. Moreover, biophysical and computational studies reveal the comparable binding affinity of substrates to BsDyP and produce lower-energy stable BsDyP-ligand(s) complexes. All together with our previous findings, we are providing a complete structural description of substrate-binding sites in DyP. The structural insight of BsDyP helps to modulate its engineering to enhance the activity towards the oxidation of a wide range of substrates.


Subject(s)
Bacillus subtilis/enzymology , Benzyl Alcohols/chemistry , Peroxidase/chemistry , Phenols/chemistry , Oxidation-Reduction
13.
Biochem Pharmacol ; 192: 114717, 2021 10.
Article in English | MEDLINE | ID: mdl-34352281

ABSTRACT

Metastasis, the main cause of breast cancer-associated fatalities, relies on many regular pathways involved in normal cell physiology and metabolism, thus, making it challenging to identify disease-specific therapeutic target(s). Chemically synthesized anti-metastatic agents are preferred for their fast and robust actions. However, these agents have adverse side effects, thus, increasingly favouring the identification of phytocompounds as suitable alternatives. Resveratrol and pterostilbene have long been established as potent anti-cancer agents. Earlier studies from our laboratory documented the anti-cancer activities associated with pterostilbene-isothiocyanate (PTER-ITC), a derivative of pterostilbene. The current study focuses on evaluating the anti-metastatic property of PTER-ITC and the underlying mechanism, by employing in silico, in vitro, and in vivo approaches. The significant anti-metastatic activity of PTER-ITC was observed in vitro against breast cancer metastatic cell line (MDA-MB-231) and in vivo in the 4T1 cell-induced metastatic mice model. Epithelial-mesenchymal transition (EMT), a hallmark of metastasis regulated by the transcription factors, Snail1 and Twist, was found to be reverted in vitro by PTER-ITC treatment. PTER-ITC blocked the activation of NF-κB/p65 and its concomitant nuclear translocation, resulting in the transcriptional repression of its target genes, Snail1 and Twist. PTER-ITC prevented the formation of IKK complex, central to NF-κB activation, by binding to the NEMO-binding domain (NBD) of IKK-ß and inhibiting its interaction with NEMO (NF-κB essential modulator). According to our observations, PTER-ITC attenuated NF-κB activation selectively in cancerous cells. In conclusion, this study demonstrated that PTER-ITC is a potent anti-metastatic agent capable of targeting physiologically important pathways in a cancer-specific manner.


Subject(s)
Breast Neoplasms/metabolism , I-kappa B Kinase/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Isothiocyanates/administration & dosage , Stilbenes/administration & dosage , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Female , Humans , I-kappa B Kinase/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Mice , Mice, Inbred BALB C , Protein Binding/drug effects , Protein Binding/physiology
14.
J Mol Graph Model ; 105: 107870, 2021 06.
Article in English | MEDLINE | ID: mdl-33647754

ABSTRACT

In humans, transthyretin (hTTR) is a plasma protein act as a transporter of thyroxine (T4) in the blood. Polychlorinated biphenyls (PCBs) are used in coolants, transformers, plasticizers, and pesticide extenders, etc. due to their physical properties, chemical stability, and dielectric properties. Cytochrome P450 can oxidize the PCBs into hydroxylated PCBs (OHPCBs) which can further interact with hTTR results in hepatoxicity, loss of metabolic rate, memory problems, and neurotoxicity. Molecular docking results show that OHPCBs bind at the active site of hTTR with a more binding affinity as compared to T4. Further, molecular dynamics simulation has been done to confirm the stability of hTTR-OHPCBs complexes. Several analysis parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds numbers, PCA, and FEL revealed that binding of OHPCBs with hTTR results in the formation of stable hTTR-OHPCBs complexes. Individual residues decomposition analysis confirms that Lys15, Leu17, Ala108, Ala109, Leu110, Ser117, and Thr119 of hTTR plays a major role in the binding of OHPCBs to form the lower energy hTTR-OHPCBs complexes. Molecular docking and simulations results emphasize that OHPCBs can efficiently bind at the active site of hTTR, which further leads to inhibition of transportation of T4 in human blood.


Subject(s)
Polychlorinated Biphenyls , Prealbumin , Biphenyl Compounds , Humans , Molecular Docking Simulation , Thyroid Hormones
15.
Protein J ; 40(2): 148-165, 2021 04.
Article in English | MEDLINE | ID: mdl-33421024

ABSTRACT

Staphylococcus aureus is resistant to ß-lactam antibiotics and causes several skin diseases to life-threatening diseases. FmtA is found to be one of the main factors involved in methicillin resistance in S. aureus. FmtA exhibits an esterase activity that removes the D-Ala from teichoic acid. Teichoic acids played a significant role in cell wall synthesis, cell division, colonization, biofilm formation, virulence, antibiotic resistance, and pathogenesis. The virtual screening of drug molecules against the crystal structure of FmtA was performed and the binding affinities of top three molecules (ofloxacin, roflumilast, and furazolidone) were predicted using molecular docking. The presence of positive potential and electron affinity regions in screened drug molecules by DFT analysis illustrated that these molecules are reactive in nature. The protein-ligand complexes were subjected to molecular dynamics simulation. Molecular dynamics analysis such as RMSD, RMSF, Rg, SASA, PCA, and FEL results suggested that FmtA-drug(s) complexes are stable. MM-GBSA binding affinity and QM/MM results (ΔG, ΔH, and ΔS) revealed that active site residues (Ser127, Lys130, Tyr211, Asp213, and Asn343) of FmtA played an essential for the binding of the drug(s) to form a lower energy stable protein-ligand complexes. FmtAΔ42 was purified using cation exchange and gel filtration chromatography. Fluorescence spectroscopy and circular dichroism results showed that interactions of drugs with FmtAΔ42 affect the tertiary structure and increase the thermostability of the protein. The screened molecules need to be tested and could be further modified to develop the antimicrobial compounds against S. aureus.


Subject(s)
Anti-Bacterial Agents , Drug Discovery/methods , Molecular Dynamics Simulation , Penicillin-Binding Proteins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Methicillin-Resistant Staphylococcus aureus , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Protein Binding , Surface Properties
16.
Arch Biochem Biophys ; 693: 108590, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32971035

ABSTRACT

The dye-decolorizing peroxidases (DyPs) belong to a unique heme peroxidase family for their biotechnological potential to detoxify synthetic dyes. In this work, we have biochemically and structurally characterized the dye-decolorizing peroxidase from Bacillus subtilis (BsDyP). The biochemical studies of BsDyP demonstrate that pH 4.0 is optimum for the oxidation of malachite green (MG) and methyl violet (MV). However, it oxidizes the MG with higher catalytic efficiency (kcat/Km = 6.3 × 102 M-1s-1), than MV (kcat/Km = 5.0 × 102 M-1s-1). While reactive black 5 (RB5) is oxidized at pH 3.0 with the catalytic efficiency of kcat/Km = 3.6 × 102 M-1s-1. The calculated thermodynamic parameters by isothermal titration calorimetry (ITC) reveal the feasibility and spontaneity of dyes binding with BsDyP. Further, the crystal structures of a HEPES bound and unbound of BsDyP provide insight into the probable binding sites of the substrates. In BsDyP-HEPES bound structure, the HEPES-1 molecule is found in the heme cavity at the γ-edge, and another HEPES-2 molecule is bound ~16 Å away from the heme that is fenced by Ile231, Arg234, Ser235, Asp239, Glu334, and surface-exposed Tyr335 residues. Furthermore, the molecular docking, simulation, and MMPBSA studies support the binding of dyes at both the sites of BsDyP and produce lower-energy stable BsDyP-dyes complexes. Here, the BsDyP study allows the identification of its two potential binding sites and shows the oxidation of a variety of dyes. Structural and functional insight of BsDyP will facilitate its engineering for the improved decolorization of dyes.


Subject(s)
Bacillus subtilis/metabolism , Color , Coloring Agents/metabolism , Peroxidases/metabolism , Bacillus subtilis/enzymology
17.
Front Biosci (Landmark Ed) ; 25(7): 1337-1360, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32114436

ABSTRACT

With rising antibiotic resistance at alarming rates in S. aureus, a major human pathogen, it is important to identify targets for new antimicrobial therapies. A number of two-component systems (TCS) have been implicated in S. aureus resistance to several antibiotics. The glycopeptide-resistance associated TCS, GraSR, is involved in cationic antimicrobial peptides (CAMPs) resistance through the regulation of mprF, dltABCD, and vraFG operons. GraS is a sensor histidine kinase, while GraR is a response regulator transcription factor, which is potential drug target. In lieu of the significance of GraSR in antibiotic resistance and the lack of structural studies on GraR, we undertook to determine the GraR structure through homology modelling. A series of small molecules were virtually screened and the top-scored molecules were analyzed for different pharmacophore properties and assessed for their binding potency to GraR (IC50). Further, a molecular dynamics simulation study of GraR-ligand complexes revealed that the predicted molecules exhibited good binding affinities at the dimerization interface of GraR. Thus, these molecules could be suitable inhibitors for the GraR-mediated signalling processes, which may be further utilized to develop novel antimicrobial agents against S. aureus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/antagonists & inhibitors , Computer Simulation , Methicillin-Resistant Staphylococcus aureus/drug effects , Operon/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests/methods , Molecular Dynamics Simulation , Molecular Structure , Operon/genetics , Protein Binding , Protein Conformation , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcus aureus/metabolism , Staphylococcus aureus/physiology , Thermodynamics
18.
Sci Rep ; 10(1): 1160, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980708

ABSTRACT

Momordica charantia (Mc) seeds are widely used edible crop with high nutritional quality. The food and pharmaceutical industries use it as a natural anti-oxygenic agent. Herein, a ~52 kDa protein, which is a major part of seed proteome has been purified, biochemically characterized and structure has been determined. MALDI-ESI-MS identified peptide fragments and contig-deduced sequence suggested the protein to be homologous to 7S globulins. The crystal structure shows that protein has a bicupin fold similar to 7S globulins and the electron density for a copper and acetate ligand were observed in the C-terminal barrel domain. In silico study reveals that a tripeptide (VFK) from Mc7S possess a higher binding affinity for angiotensin converting enzyme (ACE) than already reported drug Lisinopril (LPR). The protein is a glycoprotein and highly stable under varying thermal and pH conditions due to its secondary structures. The DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay showed the protein to have an anti-oxygenic nature and can aid in scavenging free radical from sample. The protein can assist to enhance the nutritional and functional value of food by acting as a food antioxidant. Further, characterization of Mc7S required which might add in importance of Mc7S as antioxidant, anti-diabetic and anti-hypertensive.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/chemistry , Globulins/chemistry , Momordica charantia/chemistry , Seed Storage Proteins/chemistry , Acetates/analysis , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Copper/analysis , Crystallography, X-Ray , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Globulins/isolation & purification , Globulins/pharmacology , Glycosylation , Lisinopril/pharmacology , Models, Molecular , Molecular Dynamics Simulation , Peptidyl-Dipeptidase A/drug effects , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Conformation , Protein Domains , Protein Processing, Post-Translational , Seed Storage Proteins/isolation & purification , Seed Storage Proteins/pharmacology , Seeds/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...